
1.  Introduction

Electromagnetic ion cyclotron waves are predominately left-hand circularly polarized waves with small wave 

normal angle (WNA), and with frequencies below the proton cyclotron frequency (Horne & Thorne, 1993). 

EMIC waves are usually generated near the Earth's equator and tend to become more oblique and linearly 

polarized during their propagation toward higher latitudes. In the inner magnetosphere, EMIC waves are 

generated preferentially in regions where hot (∼ 10–100 keV) ring current anisotropic ions and cold (∼ few 

eVs) dense heavy ions spatially overlap (Cornwall, 1965; Jordanova et al., 2001; Kennel & Petschek, 1966). 

EMIC waves can also be generated in the dayside and nightside magnetosphere during times of enhanced 

solar wind dynamic pressure, which acts as a source of temperature anisotropy (Li et al., 2016; McCollough 

et al., 2012, 2010; Usanova et al., 2012). EMIC waves play a key role in the dynamic evolution of the Earth's 

magnetosphere, as they regulate the loss of ring current protons (Jordanova et al., 1996, 2006; Khazanov 

et al., 2006) and radiation belts electrons (Baker et al., 2004; Chen et al., 2010; Horne et al., 2005; Summers 

& Thorne, 2003; Usanova et al., 2014), heating of thermal electrons (Thorne et al., 2006; Zhou et al., 2013), 

and leading to an intensification of the proton aurora (Cornwall et al., 1970, 1971; Spasojevic et al., 2011; 

Yahnin et al., 2013).

The compositional changes in the magnetospheric plasma, such as the presence of heavy ions even in 

small amounts, alters the generation and propagation of EMIC waves, by reducing the phase speed and 

the instability threshold, enhancing the wave growth, and affecting the propagation away from the mag-

netic equator (Gary,  1993; Kozyra et  al.,  1984; Young et  al.,  1981). Therefore, the knowledge of the ion 

composition is essential to study their role in regulating the magnetospheric processes. In a multi-ion (H+, 

He+, O+) plasma, we distinguish the multi-band structure separated by the heavy ion cyclotron frequency 

(Fraser & Nguyen, 2001; Jordanova et al., 2008; Chen et al., 2011, 2009; Usanova, Mann, & Darrouzet, 2016; 

Yu et al., 2018): H+ band (between Ω
H

 and Ω
He

), He+ band (between Ω
He

 and Ω
O

), and O+ band be-
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important role in regulating the dynamics of the Earth's magnetosphere. The presence of heavy ions 

even in small amounts significantly alters the propagation characteristics of EMIC waves. However, the 

mass spectrometers on-board the current magnetospheric missions are unable to reliably separate the 

N+ from O+. We report the first observation of N+ EMIC waves, which have the potential to advance 
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low Ω
O

. However, observations from several past missions have clearly established the significant pres-

ence of N+ ions, both in the ionosphere (Brinton et al., 1968; Craven et al., 1995; Hoffman, 1970; Hoffman 

et al., 1974; Ilie & Liemohn, 2016; Lin et al., 2020; Shelley et al., 1972; Taylor et al., 1968; Yau et al., 2009), 

and the magnetosphere (Chappell et al., 1982; Christon et al., 2002; Hamilton et al., 1988; Liu et al., 2005; 

Mall et al., 2002), and how their abundance changes as a function of solar cycle, season, and geomagnetic 

conditions. Nevertheless, most current space missions lack the possibility to reliably separate the N+ from 

O+ ions, owing to their very close masses, and the effect of N+ in regulating the near-Earth plasma dynamics 

has not yet been quantified.

There are numerous studies that report the observations of EMIC waves based on the data obtained from 

Combined Release and Radiation Effects Satellite (Meredith et al., 2014, 2003), THEMIS (Min et al., 2012; 

Usanova et al., 2012), Van Allen probes (VAP) (Khazanov et al., 2017; Saikin et al., 2015; Wang et al., 2015; 

Yu et al., 2015), magnetospheric multiscale (MMS) (Wang et al., 2017), and Cluster (Allen et al., 2015, 2016) 

missions. A comprehensive statistical analysis of EMIC waves (H. Chen et al., 2019) based on Van Allen 

probes observations revealed that the H+ band occurs at large L-shells (5 ≤ L ≤ 6.5) and in the noon sector 

(9 ≤ MLT ≤ 16), whereas He+ (O+) band is observed at low L-shells 3 ≤ L ≤ 4.5 (2 ≤ L ≤ 4) in the morn-

ing (predawn) sector. H+ and He+ bands are left-handed polarized with moderate WNA (<40°) near the 

equator (magnetic latitude (MLAT) < 10°), and become linearly and oblique polarized as they propagate 

at larger MLATs, or large L-shells. The O+ band is linearly polarized and has either small WNA (<20°) or 

large WNA (<50°). The free energy from the ring velocity distribution of ring current H+ and O+ ions, has 

been proposed as a possible generation mechanism for O+ and He+ EMIC waves occurring at low L-shells 

(Gamayunov et al., 2018; Usanova et al., 2018; Usanova, Mann, & Darrouzet, 2016; Yu et al., 2015, 2018). 

The source region of EMIC waves in the inner magnetosphere is confined within MLAT < 11°, but this is 

due to the observed bi-directional wave energy propagation both away and toward the equator (Loto'aniu 

et al., 2005; Usanova et al., 2013). However, there also exist off-equator source regions at high L-shells on 

the dayside, due to the formation of multiple magnetic field minima by solar wind compression (Usanova 

et al., 2008; Vines et al., 2019).

The presence of N+ ions in the magnetospheric plasma alters the properties of EMIC waves and a new N+ 

band (between Ω
N

 and Ω
O

) is generated, which provides an additional resonant energy band that can 

promote scattering of relativistic electrons (Bashir & Ilie, 2018). In addition, it was shown that the N+/O+ 

ratio can vary from 0.6 to ∼1 as the cutoff frequencies of hydrogen and helium increase. In this letter, we 

report the first observation of linearly polarized N+ EMIC waves by the Van Allen Probes. We also discuss 

the possible generation mechanisms for the observed N+ EMIC waves event based on the solar wind param-

eters, and storm time and local plasma conditions during this event.

2.  Data Analysis

This study is based on the high-resolution data from the Electric and Magnetic Field Instrument Suite and 

Integrated Science (EMFISIS) (Kletzing et  al.,  2013) magnetometer instrument on-board the Van Allen 

Probes (Mauk et al., 2012). EMFISIS provides the wave properties, such as power spectral density (PSD), 

ellipticity, and wave normal angle (WNA). The magnetic field data, sampled at 64 Hz, is separated into the 

perturbed and average magnetic field through 100-s moving average in Geocentric Solar Magnetospheric 

(GSM) coordinates. The average magnetic field is used to calculate the ion cyclotron frequencies. To obtain 

the dynamic spectrogram of EMIC waves, the magnetic field is transformed from GSM coordinates into 

field-aligned coordinates, and then we applied the short-time Fast Fourier Transform with a sliding window 

of 100s, providing a frequency resolution of 0.01 Hz and a time resolution of about 14 s. We use the all three 

components of the perturbed magnetic field (δB⊥1, δB⊥2, δB∥) to calculate the WNA and transverse compo-

nents (δB⊥1 and δB⊥2) to calculate the ellipticity. The OMNI data set provided the solar wind parameters 

(density, velocity, interplanetary magnetic field), and geomagnetic activity (Sym-H, auroral electrojet (AE) 

and Kp indices). The Helium, Oxygen, Proton and Electron (HOPE) (Funsten et al., 2013) mass spectrom-

eter measurements on-board Van Allen probes are used to extract density, temperatures, and temperature 

anisotropy values of hydrogen, helium, and oxygen ions.
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3.  First Observations of N+ Electromagnetic Ion Cyclotron Waves

We report the first N+ EMIC wave observation by the Van Allen probe A, based on data from the EMFISIS 

suite, on September 8, 2017, and as depicted in panel (a) of Figure 1. The N+ EMIC wave of frequency (∼ 

1.8–2 Hz) is observed during the time interval (10:33:00–10:36:00), below the cyclotron frequency of nitro-

gen ions. The wave ellipticity (panel (b)) indicates that this N+ EMIC wave is linearly polarized and it is 

propagating with a small WNA (≤30°). Note that the observed wave characteristics are similar to previous 

observations of O+ EMIC waves. The local (fc(N,O)) and the equatorial frequencies ( ( , )
eq

c N Of ) overlap, and this 

is because the spacecraft is close to the equator (MLAT ∼ 0.18–1.34°). The short duration of the event is 

possibly due to the fact the VAP-A is out-bounding at low L-shells (L ∼ 2.45–2.55). Figure 1d shows the PSD 

as a function of frequency, extracted at the time of the first observed burst in wave activity (10:34:28 UT). 

The sharp peak between the oxygen and nitrogen cyclotron frequencies confirms the existence of a linearly 

polarized N+ band EMIC waves.

Analysis of the solar wind parameters and geomagnetic conditions, in Figures 2a–2c, reveals that the N+ 

EMIC wave is observed during the recovery phase of a geomagnetic storm, characterized by a minimum 

Sym-H of ∼ −146 nT (panel (c)). The duration of the wave activity is denoted by the vertical dashed lines. 

The reduced part of Figure  2 is presented in Figure  S1 which shows that the values of parameters are 

almost constant. The average constant values are shown by the arrow in Figure 2. The increase in solar 

wind dynamic pressure (McCollough et al., 2012) (panel (b)), and several subsequent injections (AE > 300) 

(Clausen et al., 2011), before the wave activity, could provide favorable conditions for the generation of N+ 

EMIC waves.

Figures 3a–3c show the energy distribution of equatorially mirroring H+ (panel (a)), He+ (panel (b)), and 

the CNO+ group ions (panel (c)). Note that the mass resolution of the HOPE instrument does not allow mass 

separation between N+ and O+ ions, and the observation of N+ and the O+ ions is considered here as the 

CNO+ group. These measurements reveal that the hydrogen and helium ions are mostly warm (<100 eV), 

while the CNO+ ions contribute to the energetic ring current population. During the time the wave activity 

is observed (denoted by the vertical dashed lines), the energy of CNO+ ions significantly decreases, while 
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Figure 1.  Wave properties of N+ EMIC waves on September 8, 2017 as a function of Universal Time (UT), L-shell, 
magnetic local time (MLT), and magnetic latitude (MLAT): (a) power spectral density (PSD), (b), ellipticity, and c, wave 
normal angle (WNA) (0°–90°). The upper and lower black solid (dashed) curves show the local (equatorial) cyclotron 
frequency of nitrogen and oxygen respectively. Panels (a)–(c) show variations as function of UT, L, MLT and MLAT 
(upper x-axes). (d), The PSD as a function of normalized frequency (ω/ωc0) extracted at 10:34:30 UT.
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the protons get energized. Figures 3d–3g show the density (ni), parallel (T∥) and perpendicular (T⊥) temper-

atures, and temperature anisotropy (T⊥/T∥) for H+, He+, and CNO+ ions. The pitch angle dependent flux of 

CNO+ ions (in Figure 3h) shows the butterfly distribution at lower ring current energies (<15 keV), whereas 

it becomes normal distribution for higher energy ions (∼ 52 keV).

Instability analysis, based on the assumption that N+ and O+ have the same abundances (not shown here), 

does not support the hypothesis of a local generation mechanism of N+ EMIC waves. This is due to the fact 

that proton density when the wave activity has been observed is relatively low, that is ∼ 0.2 cm−3, which 

is very small as compared to cold electron ∼ 200 cm−3, based on the electric field and wave density meas-

urements. In addition, the proton temperature anisotropy Th⊥/Th∥ − 1 ∼ 0.8 and the parallel temperature 

Th∥ = 1.2 keV are lower than needed to indicate a local generation mechanism. However, possible dipolari-

zation events and the associated particle injections, as denoted by the subsequent increases in the AE index 

(Figure 2, panel c) during the early recovery phase, could provide favorable conditions for the wave gener-

ation and propagation. It has been suggested that substorm injections can lead to EMIC wave generation if 

the injection occurs within 12 h of wave activity (Clausen et al., 2011). In the present case, intensification of 

the AE index is present within 10 h of generating N+ EMIC waves.

Two possible scenarios can favor the generation of linearly polarized N+ EMIC waves. One mechanism 

involves the presence of H+ and/or O+ ring velocity distributions (Gamayunov et  al.,  2018; Usanova 

et al., 2018; Usanova, Mann, & Darrouzet, 2016; Yu et al., 2015, 2018), which is different than the usual 

temperature anisotropy driven mechanism, and could explain the observations of these linearly polarized 

waves at low L-shells. The phase space distribution obtained from HOPE data (see Figure S2) depicts the 

presence of possible H+ ring distribution around 0.5 and 1 keV. The other possibility is via the excitation due 

to mode conversion near the equatorial region (Kim et al, 2015, 2019; Lee et al., 2008; Miyoshi et al., 2019). 

Nevertheless, the existence of a linearly polarized N+ band at low L-shells is in agreement with the previ-

ous observations of linearly polarized He+ and O+ bands (Gamayunov et al., 2018; Usanova, Malaspina, 

et al., 2016; Usanova et al., 2018; Yu et al., 2015). The wave power structure during the late recovery phase 

in the N+ band can be relevant to the explanation given by (Paulson et al., 2017), and also the increase in the 
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Figure 2.  Solar wind conditions and geomagnetic indices from 18:00 UT of September 7, 2017. (a), The components 
of interplanetary magnetic field (IMF) B (nT), and the x-component of velocity vx (km/s) in GSE coordinates on left 
and right axes, respectively, and (b) solar wind pressure (nPa). The Sym-H and AE indices are shown in (c). The region 
between two vertical black dotted lines represents the duration of N+ EMIC waves activity (∼10:33:00–10:36:00 UT). 
The approximate constant values of the parameters during the wave activity, are mentioned with arrows. The reduced 
part of Figure 2 showing constant values is given in Figure S1.
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radial extent of the resonance through dispersive effects is suggestive of a common source region as shown 

in the recent simulations (Kim et al., 2019). The generation mechanism of this N+ EMIC wave event based 

on the possible sources discussed above needs further analysis and will be investigated in the future.

4.  Summary of Results and Discussion

We report on the first observation of linearly polarized N+ EMIC waves at low L-shells (L < 4), based on 

previously available measurements from instruments onboard the Van Allen Probes. The solar wind condi-

tions reveal that the wave activity is observed during the recovery phase of 08 September 2017 storm, and 

the strong dayside compression and several subsequent particle injections associated with dipolarization 

events (AE > 300) could provide favorable conditions for the generation of the N+ band. The wave activity 

is observed very close to the equator, and since the source region of EMIC wave in the inner magnetosphere 

seems to be confined within MLAT < 11° (Loto'aniu et al., 2005; Usanova et al., 2013), we speculate that the 

observed wave activity has its source near the equator.

The local plasma conditions do not favor a local generation mechanism. However, linearly polarized, small 

wave normal angles, N+ EMIC waves observed at low L-shells can be generated via the mode conversion of 

compressional waves at the ion-ion hybrid/Buchsbaum resonance (Lee et al., 2008; Kim et al., 2015, 2019), 

and/or due to the free energy from ring velocity distribution of ring current protons (H+) and oxygen (O+) 

(Gamayunov et al., 2018; Usanova et al., 2018; Usanova, Mann, & Darrouzet, 2016; Yu et al., 2015, 2018).
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Figure 3.  Energy distribution, plasma parameters, and pitch angle distribution from HOPE measurements by Van 
Allen probe A on September 8, 2017. (a–c) The energy distribution of hydrogen (H+), helium (He+), and CNO+ ions, 
respectively. (d–g) The density, parallel and perpendicular temperatures and temperature anisotropy of proton (H+), 
helium (He+), and CNO+ ions. Panels (a–g) show variations as a function of Universal Time (UT). (h) shows the CNO+ 
flux as a function of pitch angle at time 10:35 and L = 2.5 for four different energies. The vertical dashed lines indicate 
the time period when the wave activity was observed. HOPE, Helium, Oxygen, Proton, and Electron.
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However, this first observation of N+ EMIC wave provides evidence of the N+ ions presence in the near-

Earth region, in addition to O+, during this event. This study opens up the new avenues of quantifying the 

relative concentrations of N+ and O+ based on EMIC wave observations from current missions (e.g., Van 

Allen Probes, MMS, and Cluster), which can be used as a tool to infer the N+ ion concentration using the 

observed characteristic frequencies (Kim et al., 2015; Min et al., 2015; Miyoshi et al., 2019). Inferred N+ ion 

concentration can reveal N+ torus and N+ warm plasma cloak by quantifying O+ torus (Nosé et al., 2018, 

2020, 2015, 2011) and O+ warm plasma cloak (Chappell et al., 2008). Also, the evidence of the existence of 

N+ EMIC waves just above the oxygen cyclotron frequency, will help resolve the discrepancies of consider-

ing N+ band as He+ band, due to overlooking the N+ existence. Quantifying the relative contribution of N+ 

and O+ to magnetospheric plasma, and distinguishing between N+ and He+ bands based on N+ EMIC wave 

properties, have important implications for understanding the dynamics of the inner magnetosphere, as 

well as developing strategies to complement the current and future space missions.

Data Availability Statement

The Van Allen Probe data used in this study are available from https://spdf.gsfc.nasa.gov/pub/data/rbsp. 
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