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Materials and Methods 

Ambient Noise Correlation 

In this study we utilized continuous recordings of ground motion from all available broadband 

seismic stations deployed in our study region between 2000-2018, which included a total of 232 

stations (Table S1). The data were downloaded from the Incorporated Research Institution for 

Seismology (IRIS) Data Management Center using the ObsPy FDSN web service client (32). To 

calculate ambient noise correlation functions (NCFs), we selected 3 time periods when 

simultaneous network deployments enabled dense interstation path coverage of the Yellowstone 

region. The first time period (from 2000-03-01 to 2001-08-10) predominantly consisted of stations 

from the Geodynamics of the Yellowstone Hotspot from Seismic and GPS imaging Experiment 

(XC) and the Montana BB Array (XS), which temporally overlapped for approximately one month. 

The second time period (from 2007-01-01 to 2010-12-31) included the Earthscope/USArray 

Transportable Array deployment (TA), the Bighorn Arch Seismic Experiment (XV), and the Noise 

Observatory for Imaging the Subsurface beneath Yellowstone (Z2; 33). The last period (from 

2017-01-01 to 2018-01-01) was chosen to include 15 stations from the Yellowstone National Park 

Seismograph Network (WY) that were upgraded from short period to broadband instruments. 

During all time periods, stations from permanent networks IW (Intermountain West Seismic 

Network) and US (United States National Seismic Network) were included in the cross 

correlations, when available. 

 

Vertical component NCFs between all interstation pairs were calculated closely following the 

methodology of Bensen et al., (2007) (34).  First, daily vertical component waveforms were 

corrected for instrument response and resampled to 2 Hz. Next, waveforms were temporally 

normalized using a running average filter of 64 s and spectrally whitened. These steps are 

performed to minimize the influence of transient signals (e.g., from earthquakes), and to remove 

the bias from peaks in the ambient noise spectrum, typically near 15 s and 7.5 s (i.e., the primary 

and secondary microseisms).  After pre-processing, daily data were trimmed into 12 overlapping 

4-hour segments, and each segment was cross correlated and stacked to produce a daily 

correlation function. This process was repeated for all days, and daily correlation functions were 

linearly stacked to produce the final NCF.  

 

Traditional Ambient Noise Tomography 

 To construct a starting model for full waveform inversion (FWI) we used our dataset to create a 

3D VS model using traditional ambient noise tomography (ANT) (35, 36), which is based on 

inverting Rayleigh wave group or phase velocity dispersion measurements extracted from NCFs. 

Here, we measured phase velocity dispersion curves for periods between 6 – 30 s for all 

interstation pairs using automated frequency time analysis (FTAN). Phase velocity 

measurements for a given period were accepted if the signal-to-noise ratio (SNR) was greater 

than 10 and the interstation distance was greater than 2 seismic wavelengths. The culled dataset 

was used to invert for phase velocity maps at all observed periods using 2D Voronoi tomography 

(37). Following this approach, we parameterize each map using 300 randomly located Voronoi 

cells and solve the linearized tomography problem a total of 100 times to create an ensemble of 

solutions, where each solution uses a different realization of the random Voronoi projection. All 

solutions are mapped onto an underlying fine-scale grid on which the mean and standard 

deviation of the model ensemble are computed (Fig. S1). The forward problem (i.e., calculation 



of ray paths and travel times) is computed by numerically solving the Eikonal equation using the 

Python-based software package PyKonal (38). 

 

Finally, the 3D VS model is obtained by inverting local 1D dispersion curves at all model points 

on a 0.1 x 0.1 degree grid using a Markov chain Monte Carlo (McMC) approach (15). In each 

1D inversion, the model is parameterized using 5 B-spline functions in the crust, and a single 

layer in the mantle. Because surface wave dispersion measurements are not strongly sensitive to 

the Moho depth (i.e., the Moho depth trades off strongly with the seismic velocities above and 

below the boundary), we include an a priori estimate of the crustal thickness from Schmandt et 

al., (2015) (39), which is constrained by a combination of receiver function imaging and 

Rayleigh wave phase velocity and ellipticity measurements. In our inversion, the Moho depth is 

assigned an uncertainty of +/- 3 km from the depth constraint from Schmandt et al. (2015). In the 

McMC search, proposed models are firstly randomly selected from a uniform prior distribution 

to form each Markov chain. Then, the models are randomly sampled from a Gaussian prior 

distribution within the Markov chain, which contains 2500 iterations before a new chain is 

initiated by randomly sampling the model space again. The model selection during the McMC 

search is guided by the Metropolis-Hasting algorithm (40). The predicted dispersion curve is 

calculated using the Computer Programs in Seismology software package (41). The probability 

of acceptance of a proposed model m is defined by the likelihood function 

 𝑃  =   exp (−𝜑(𝑚)2 ) 

 

where 𝜑 is the misfit between the observed and predicted phase travel times 

 𝜑(𝑚)  =   (𝑇𝑜𝑏𝑠  −  𝑇(𝑚))2𝜎2  

 

The data uncertainties 𝜎 , for each local dispersion curve are inherited from the 2D Voronoi 

tomography. At each grid point, the final 1D VS model is selected as the average of the 2000 best 

fitting models from the Markov chain. 

 

Full waveform inversion 

In full waveform inversion (FWI), the starting wave speed model (here, the VS model calculated 

using traditional ANT) is iteratively updated based on the calculation of the gradient of the misfit 

function with respect to the model parameters (i.e., sensitivity kernel) via the adjoint method 

(42). The computation of the sensitivity kernels requires one forward wavefield simulation and 

one adjoint wavefield simulation per seismic source. The interaction of the forward wavefield 

(i.e., the wavefield emanating from a virtual source) and the adjoint wavefield (i.e., the back-

propagating wavefield from all adjoint sources) creates the sensitivity kernel (19,43). 

 

At each iteration, we select a subset of all virtual sources to be used in the adjoint inversion. For 

iterations 1 – 5 we select virtual sources from the TA, WY, IW, and US networks for a total of 

90 virtual sources. For iterations 6 – 10, we start to include the XC and XS networks as virtual 



sources (167 total sources). Virtual sources from networks Z2 and XV are left out of the adjoint 

inversion but serve as a validation dataset for the final model. Rayleigh wave cross correlation 

travel time delays are minimized in 6 overlapping period bands (5 - 7 s, 6  - 9 s, 8 - 12 s, 10 - 16 

s, 15 - 23 s, 20 - 30 s) at each iteration according to the misfit function 

 𝜒  = 1𝑁∑12∑Δ𝑇𝑗2𝑀
𝑗=1

𝑁
𝑖=1   

 

where 𝜒 is the misfit, N is the number of period bands, M is the number of measurements in each 

period band, and Δ𝑇𝑗  is the cross-correlation travel time delay for the j-th measurement.  Once 

the kernels are calculated for all virtual sources, we sum them and apply smoothing using a 

Gaussian filter with a length scale of 10 km in the horizontal direction and 1 km in the vertical 

direction.  The smoothed kernel is then preconditioned using the inverse of the Hessian matrix, 

yielding the final Fréchet kernel K which is used to update the current model. K defines the step 

direction to update the model but the step size 𝛼 that yields the largest misfit reduction needs to 

be determined to find the optimum model perturbation. Here, we find 𝛼 using a line search, in 

which 4 trial step sizes are used to forward predict the wavefield for a subset of 15 events. The 

step size with the smallest misfit is then chosen to update the model following 

 

mi+1
 = mi

 + 𝛼 K 

 

where mi+1 and mi are the updated are previous models, respectively. Fig. S2 shows the evolution 

of the misfit over the course of the inversion.  

 

The forward and adjoint wavefield modeling required for the calculation of the adjoint kernels 

was performed using the spectral-element based code SPECFEM3D Cartesian (44). Our model 

domain spans from –115.5o to -104.0o in longitude, 40.5o to 48.0o in latitude, and extends to a 

depth of 150 km. The geographic coordinates are projected into the UTM system and the model 

accommodates surface topography (https://www.gmrt.org/GMRTMapTool/). The numerical 

mesh is divided into 128 elements in each horizontal dimension and 20 elements in the depth 

dimension. At a depth of 60 km a doubling layer is introduced to reduce the total number of 

elements. The maximum time step used in each simulation is 0.05 s and the minimum resolved 

period is 4.7 s. The starting model is constructed from the traditional ANT model by 

interpolating the wave speed on all Gauss-Lobatto-Legendre (GLL) grid points of the numerical 

mesh in the region where the model is defined. Outside of this region, either the horizontally 

averaged velocity of the ANT model is used, or, at depths below 60 km, the 1D model of the 

Yellowstone region from Huang et al., (2015) is used. The compressional wave speed VP and 

density 𝜌 are scaled from VS assuming VP = 1.73VS and 𝜌 = 0.72VS (45). 

 

To ensure waveforms are robust for fitting, we enforce stricter data selection criteria compared 

with the data used in the traditional ANT inversion. The data selection process for FWI consists 

of two stages. First, the SNR of the folded noise correlation function (i.e., the average signal over 

positive and negative lag times) must be larger than 20, where the noise amplitude is calculated 

by taking the RMS of the data in a 300 s window following the Rayleigh wave arrival. Second, 



the positive and negative lag signals must have a correlation coefficient > 0.5, which helps 

remove strongly asymmetric noise correlations. Prior to calculating the correlation coefficient a 

60-s wide cosine taper centered on the Rayleigh wave is applied (Fig. S3). The accepted NCFs 

are used to calculate the empirical Green’s functions (EGFs) by taking the negative time 
derivative (46), and the EGFs are compared to synthetic displacement Green’s functions to 
calculate the misfit.  

 

Fig. S4 shows longitudinal slices of model m10 at latitudes ranging between 43.2o - 45.2o and 

Fig. S5 shows a comparison of the initial model m00 and the final model m10 at depths of 5, 10, 

15, and 20 km, and Relative velocity perturbations of model m10 are shown in Figs S6 and S7. 

Additional waveform fits beyond those in the Main Text are shown in Figs S8 – S10. 

 

Resolution Test 

To test how well the low velocity anomaly below Yellowstone caldera is resolved we inverted a 

synthetic dataset calculated from 3D waveform simulations of a hypothetical magma reservoir 

using the same approach that was used to invert the observed data. The target model consists of 

an ellipsoidal anomaly centered below Yellowstone caldera extending to a depth of ~20 km. The 

strongest velocity anomaly lies in the depth range of approximately 4 – 10 km, with 𝑉𝑆  <  2.0 

km/s (Fig. S11A and C). Using this target model, SPECFEM3D synthetics were calculated by 

placing vertical point sources at all virtual source locations, allowing us to replicate the source-

receiver geometry used in the inversion of the observed data. The starting model for the full 

waveform inversion was a strongly diminished (peak VS anomaly of –10%), low pass filtered 

version of the target model. The inversion of the synthetic data also used a two-stage approach, 

in which 90 sources were used in iterations 1 – 5, and 167 sources were used in iterations 6 – 10. 

The recovered model (Fig. S11B and D) almost fully captures the true amplitude and horizontal 

extent of the target model, suggesting that the main features of the low velocity anomaly below 

Yellowstone caldera are well resolved. Although the depth extent of the anomaly in the target 

model does not exceed ~20 km, the recovered model is vertically smeared with a weak low 

velocity anomaly extending to 40 km depth. Thus, using this approach, a separate, weaker low 

velocity anomaly associated with a deeper magma reservoir below Yellowstone caldera may be 

difficult to resolve with surface waves.  

 

Melt fraction modeling 

We model the relationship between VS and melt fraction using the effective-medium theory (24), 

which enables the calculation of the bulk modulus K and shear modulus 𝜇  of a two-phase 

aggregate of crystals and melt. To calculate VS of the solid phase, we used the Perplex software 

to compute K, 𝜇 and density 𝜌 for a granitoid at 800°C and 100 MPa. Assuming a lower 

temperature consistent with cold storage (e.g., 600 – 750 °C) would slightly increase the 

modeled melt fraction (< 2% difference). Table S2 shows the assumed composition in terms of 

its major oxide components. If the composition of the solid fraction of the melt reservoir is less 

silicic (e.g., dacitic) the estimated melt fraction would be slightly higher because the VS of the 

solid fraction would increase, and thus more melt would be required to reach the low VS 

observed in the reservoir. For the melt phase, we assumed a density of 2.2 kg/m3 and a bulk 

modulus of 9.0 GPa (47,48). For simplicity, we neglect the presence of volatiles, although the 



presence of H2O and CO2 could reduce VS. To calculate VS we first compute the velocity of a 

two-phase aggregate assuming air-filled pore-spaces, and correct the velocity by substituting in 

the liquid phase following Gassmann’s equation (49). This calculation yields the low frequency 

(relaxed) seismic velocity of the partially molten aggregate. To perform these calculations, we 

used the ElasticC software package available at http://github.com/michpaulatto/ElasticC. 

 

In this approximation, a key parameter is the aspect ratio of the ellipsoidal pore spaces (24), 

which we vary from 0.05 to 1.0. Aspect ratios in the range between 0.1 – 0.15 represent 

texturally equilibrated partially molten rocks with dihedral angles between 20o – 40o (27). 

Smaller aspect ratios imply less melt is required to wet grain boundaries compared to more 

equant pockets isolated near grain boundary junctions. In real systems, melt may be stored both 

along grain boundaries and in melt-rich lenses or pockets under non-equilibrium conditions, 

which makes it challenging to ascribe a single aspect ratio for the composite system. In the case 

of Yellowstone’s silicic reservoir, the assumption of textural equilibrium may be reasonable 

since the system has not erupted in > 70 kyr, although the presence of strong radial anisotropy 

(15) may indicate melt storage in horizontally layered sill complexes. Without knowing the 

crystal fraction and melt inclusion geometry of such a horizontally layered system an appropriate 

aspect ratio cannot be determined.  

 

To estimate the volume of silicic melt present in the mid-to-upper crustal reservoir we use the 

2.5 km/s velocity contour as a diagnostic of the presence of partial melt. At 5-km this contour 

corresponds to a melt fraction of >10 %, thus our estimate is a conservative one. The total 

volume of the reservoir under this assumption is ~11,000 km3. Although the minimum velocity 

in the reservoir of ~2.1 km/s corresponds to between 16 – 20 % melt, the melt fraction within the 

volume would be lower on average. Assuming an average melt fraction in the range of 15% melt 

implies a total volume of silicic melt of 1,650 km3.  

 

 

 

 



 

Figure S1. 

Phase velocity inversion results for periods of 6, 10, and 20 s. The top row (panels A-C) shows 

the velocity perturbation with respect to the average Vs (shown in the top left of each map), and 

the bottom row (panels D-F) shows the standard deviation of the shear velocity in km/s. The 

black elliptical outline at the center of each panel marks the Yellowstone caldera. 



 
Figure S2 

Misfit evolution during FWI. (A) Total misfit normalized by the number of observations for 

iterations 0 to 10. Stage 2 of the iteration, in which more virtual sources were added, started at 

iteration 6. (B) Total number of observations at each iteration. 

  



 

 

Figure S3. 

Summary of steps used for data selection. (A) Noise correlation function between stations 

TA.J16A and TA.L20A. A cosine taper (black line) is applied to the raw waveform (gray line) to 

mute signal outside the surface wave window on both positive and negative lag times. (B) 

Positive (blue) and negative (orange) lag signals. The correlation coefficient between the two 

waveforms is shown in the upper right. (C) NCF after averaging the positive and negative lag 

signals (i.e., folding). The grey line shows the window used to calculate the RMS noise level, 

and the SNR is shown in the upper right.   

 

  



 

Figure S4. 
Longitudinal slices of model m10 at six different latitudes ranging between 43.2o - 45.2o. 

 

  



 

 

 

Figure S5. 

VS maps of models m00 (left column) and m10 (right column) at depths of 5, 10, 15, and 20 km. 

  



 

Figure S6. (A) Collection of all 1D VS profiles of m10 (grid spacing of 0.1 x 0.1 degrees). The 

dashed blue line shows the average profile that was used to calculate velocity perturbations 𝛿VS. 

(B) VS cross section along profile X-X' (same as shown in Figure 2B). (C) Same as A, but for 1D 𝛿VS profiles. (D) 𝛿VS cross section along same profile shown in B.  

  



 
Figure S7. Relative velocity perturbations of model m10 at depths of 10, 20, 30, and 40 km.  

 

  



 

Figure S8. 

(A) Record section of waveform fits from virtual source XC.Y104 (yellow star), filtered between 

6 - 9 s, at stations shown in panel (B). (C) Close-up of waveform fits for stations XC.Y61 and 

XC.Y16. Observed data are shown in black and synthetics from the starting model and final 

model are shown in red and green, respectively. 

  



 

Figure S9. 

Same as Fig. S6, but for a virtual source at station XV.BHM3 (yellow star). Virtual sources from 

the XV network were not used in the inversion. 

 

  



 

Figure S10. 

Filter banks showing waveform fits for caldera traversing paths TA.H18A - Z2.IPID (panel A), 

XC.Y104 - XC.Y16 (panel B) and XV.BHM3 - Z2.IPID (panel V). The period range used in 

each bandpass filter is shown at the top left of the waveforms. Maps to the right of the filter 

banks show the location of the virtual source (yellow star) and station (red triangle). Data shown 

in panel C were not used in the inversion.   



 

 

 

Figure S11. 

Resolution test results. Top row: Maps of the input (A) and recovered (B) models, at a depth of 5 

km. Bottom row: Vertical cross sections at a latitude of 44.5o of the input (C) and recovered (D) 

models. 

  



 

 

 

Seismic Network Network Code Reference 

Geodynamics of the Yellowstone Hotspot 

from Seismic and GPS imaging 

XC https://doi.org/10.7914/SN/XC_2000 

Montana BB Array XS https://doi.org/10.7914/SN/XS_1999 

USArray Transportable Array TA https://doi.org/10.7914/SN/TA 

Bighorn Arch Seismic Experiment XV https://doi.org/10.7914/SN/XV_2009 

Noise Observatory for Imaging the 

Subsurface beneath Yellowstone 

Z2 Seats & Lawrence (2004) 

Yellowstone National Park Seismograph 

Network 

WY https://doi.org/10.7914/SN/WY 

Intermountain West Seismic Network IW https://doi.org/10.7914/SN/IW 

United States National Seismic Network US https://doi.org/10.7914/SN/US 

Table S1. Seismic networks used in this study.  

  



 

Oxide Weight % 

SiO2 75.5 

Al2O3 12.6 

FeO 0.3 

CaO 0.3 

Na2O 3.4 

K2O 5.2 

Table S2. Composition of granitoid used to calculate seismic velocity, in terms of 6 major oxide 

components. The composition is representative of the Lava Creek Tuff (50). 
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