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Abstract

Earth is one of the inner planets of the Solar System, but – unlike the others – it has an oxi-
dising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). 
The GMF does not only protect life on Earth against the solar wind and cosmic rays, but 
it also shields the atmosphere itself, thus creating relatively stable environmental condi-
tions. What is more, the GMF could have influenced the origins of life: organisms from 
archaea to plants and animals may have been using the GMF as a source of spatial infor-
mation since the very beginning. Although the GMF is constant, it does undergo various  
changes, some of which, e.g. a reversal of the poles, weaken the field significantly or  
even lead to its short-term disappearance. This may result in considerable climatic changes 
and an increased frequency of mutations caused by the solar wind and cosmic radiation. 
This review analyses data on the influence of the GMF on different aspects of life and it 
also presents current knowledge in the area. In conclusion, the GMF has a positive impact 
on living organisms, whereas a diminishing or disappearing GMF negatively affects living 
organisms. The influence of the GMF may also be an important factor determining both 
survival of terrestrial organisms outside Earth and the emergence of life on other planets.
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Introduction

Earth is one of the inner planets of the Solar System and like its two closest neighbours, 
Venus and Mars, it is a rocky planet (Rao 1980). However, unlike Mars and Venus, Earth 
is habitable, has an oxidising atmosphere with a well-developed ozone layer, and – above 
all – a unique magnetic field.
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Earth’s magnetic field, also called the geomagnetic field (GMF), is a global vector field, 
which means that in each point of space the magnetic field is defined by a vector of the 
magnetic field. This vector is represented by coordinates in the Geographic Coordinate 
System (GCS). In the International System of Units (SI) the intensity of the GMF is meas-
ured in tesla units (T), although gauss units (G) are still frequently used. Its strength varies 
naturally, ranging from approximately 25 to 65 μT (0.25–0.65 G) (Finlay et al. 2010).

Although the GMF can be considered as a sum of several different fields, such as a uni-
form magnetic field, continental magnetic field, anomalous magnetic field, external mag-
netic field, and a variation field, the main role is played by a uniform magnetic field (Dubrov 
1978). The GMF could be also considered as a sum of two components, such as the Internal 
or the Main Field (generated by geodynamo) (Bullard 1949) and the External Field (gener-
ated by interactions between the solar wind and the Earth’s ionosphere) (Glassmeier and 
Vogt  2010). Currently, Earth’s magnetic poles are near geographical poles (Clark 1979), 
however, a long-term drift of geomagnetic poles (World Data Center for Geomagnetism 
2012) can be observed. Still, the GMF is considered as a constant magnetic field, which 
means that it is free from variations with a period of a year or shorter, because its main com-
ponents, i.e. uniform magnetic field, continental magnetic field, anomalous magnetic field, 
(Dubrov 1978) are constant. Rapid changes of less than a year (Dubrov 1978) in the GMF 
occur only in the time-varying component of the GMF of a very low intensity, known as the 
‘variation field’, which is generated by electric current systems in the ionosphere (Dubrov 
1978).

According to a dominant hypothesis, Earth did not have a magnetic field in its early 
days. Originally, weak magnetic fields in our galaxy induced fluid movement in the core of 
Earth, leading to a relatively quick formation of the field (Clark 1979). Undoubtedly, the 
Earth’s GMF had already existed when life appeared on the planet 3.5–4.3 billion years ago 
(Tarduno et al. 2010; Gargaud et al. 2012).

Scientists have long been interested in the origins and evolution of life on Earth, and 
the role the GMF played in the process (Kirschvink et  al. 1985). The knowledge of this 
relationship is very important not only for the understanding of the origins of life on Earth 
and its further evolution, but also for chances of finding life on other planets and/or moons.

Having searched the phrase ‘Geomagnetic field’ in scientific browsers, i.e. the SCO-
PUS and the Web of Science (WoS) (Fig. 1a; SI 1), we found over 21,000 and 19,000 hits, 
respectively. The oldest paper dates back to the first half of the twentieth century (McNish 
1940), a period when the dynamo theory was formulated (McNish 1940). Since then, the 
interest in this field has been constantly rising. As a result, a growing number of studies 
and papers have appeared that focus on the GMF as a fundamental environmental drive in 
the evolution life on Earth.

Apart from the original term ‘geomagnetic field’, ‘geomagnetism’ has also been used 
since 1939 (Fleming 1939). For example, in the SCOPUS the number of hits amounted to 
over 600 until the end of 1970s, while in the WoS it was a tenth of that number (Fig. 1b; 
SI 1). Besides, until the end of 2020 there was a large discrepancy between results in these 
databases with nearly 18,000 hits in the SCOPUS and only a little over 1,000 in the WoS 
(Fig. 1b; SI 1). Nevertheless, the issue has become increasingly studied over the years.

At first, scientists were mostly interested in the impact of the GMF on animals. The 
phrases ‘Geomagnetic Field’ and ‘Animals’ appeared alongside in papers before 1970 
(SCOPUS) or the early 1970s (WoS) (SI 1). Soon, scientists took interest in plants, and 
first studies on the impact of Earth’s magnetic field on plants appeared in the SCOPUS 
between 1970 and 1980, and a decade later in 1990, according to the WoS (SI 1). At the 
same time, the term ‘Magnetoreception’ was coined, and 15 hits can be spotted before  
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1990 (SCOPUS), and seven between 1980–1990 (WoS) (Fig. 1c; SI 1). Apart from studies on  
the GMF’s impact on animals, cells were also taken into account with the first paper before 
1970, six others that included ‘Geomagnetic field’ and ‘cells’ (SCOPUS) or six further papers  
in the following decade (WoS) (SI 1).

Subsequently, further questions were raised, for example how the geomagnetic reversal 
contributed to mass extinctions. In fact, this issue has been rarely discussed: the first paper 
appeared before 1980 (SCOPUS) or in the early 1990s (WoS) (SI 1). At present, only 27 
papers are recorded in the WoS and 26 in the SCOPUS (SI 1). Finally, the term ‘magneto-
fossils’ occasionally appears in both databases in the context of the geomagnetic field, it is 
one hit in SCOPUS and two in WoS until the end of 2020 (SI 1).

Our analyses show that the GMF and its impact on life on Earth raised interest in the 
late 1930s, and since then it has been increasing (SI 1). This is visible in results from 
both SCOPUS and WoS for all the phrases ‘Geomagnetic Field’ (Fig.  1a), ‘Geomagne-
tism’ (Fig. 1b), ‘Magnetoreception’ (Fig. 1c). and for cumulative results for phrases ’Geo-
magnetic Field AND …’ (Fig. 1d). Nevertheless, there is no comprehensive review of the 

Fig. 1  Changes in interest in GMF-related topics expressed as changes in the number of publications, in 
subsequent time periods (Scopus/WoS) until the end of 2020 (data obtained 06.05.2021) for keywords and 
phrases, a ’Geomagnetic Field’, b ’Geomagnetism’, c ’Magnetoreception’ and d Cumulative results for all 
phrases ’Geomagnetic Field AND
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knowledge on the topic. Many researchers focus on a small fraction of this broad research 
field, testing only the direct or indirect effects of the GMF. So far, the broadest review in 
the field of geomagnetobiology has been Dubrov’s work ‘The geomagnetic field and life: 
Geomagnetobiology’, However, it was published in 1978, which makes it outdated in many 
aspects. Similarly, ‘Magnetite Biomineralisation and Magnetoreception in Organisms: A 
New Biomagnetism’ published in 1985 (Kirschvink et al. 1985) provides an in-depth over-
view of the state of the knowledge in magnetosome-based magnetoreception and the mag-
netite biomineralisation process itself, Still, it is also an old book and there is a shortage 
of discoveries from last thirty-five years. Another problem concerns review articles from 
that time, such as ‘Bird orientation and the geomagnetic field: A review.’ (Ossenkopp and 
Barbeito 1978), ‘Biophysics of geomagnetic field detection’ (Kalmijn 1981) or ‘How the 
geomagnetic field vector reverses polarity’ (Prévot et al. 1985). First of all, they are out-
dated in some respect, but they are also more specialised and present knowledge in very 
narrow topics. Nonetheless, older books and articles can provide valuable information. We 
often find references to even older basic research which laid the foundations for modern 
geomagnetobiology or operated in such unique fields that they have never been continued 
and their results are still valid today. In modern literature we do not find any paper as thor-
ough as Dubrov’s ‘Geomagnetobiology’. More recent review articles like ‘Magnetotactic 
bacteria, magnetosomes and their application’ (Yan et al. 2012) or ‘Biological effects of 
the hypomagnetic field: An analytical review of experiments and theories’ (Binhi and Prato 
2017) provide more current information, but its form is much more scattered.

Therefore, the main aim of our paper is to present a comprehensive review focused on 
the impact of the GMF on the origins and evolution of life on Earth, as well as, the influ-
ence of the GMF on living organisms at different levels of biological organisation, includ-
ing the viability of organisms, genetic stability, modulation of gene expression and behav-
iour. We attempt answer the question: How broad and multi-level is the influence of GMF 
on living organisms? Such a review should be highly interesting and useful not only for 
astrobiologists, but also for ecologists, microbiologists, zoologists and botanists.

Survey Methodology

The analysis of changes in the number of papers on GMF-related topics in the WoS and 
SCOPUS helped us to determine the degree of interest in the topic. However, we did not 
limit ourselves just to these two databases, but considered many other publications on the 
GMF and its impact on the origins and evolution of Earth’s biosphere. We also referred to 
the PubMed and Google Scholar. The search strategy included keywords and phrases, such 
as geomagnetic field, geomagnetism, magnetoreception, hypomagnetic, geomagnetic field 
AND life on Earth, geomagnetic field AND evolution of life, geomagnetic field AND cells, 
geomagnetic field AND animals, geomagnetic field AND plants, geomagnetic field AND 
microfossils, geomagnetic field AND mass extinction. Finally, we considered such books 
as “The geomagnetic field and life: Geomagnetobiology” by Dubrov (1978), “Young Sun, 
Early Earth and the Origins of Life” by Gargaud et al. (2012), and online sources of the 
World Data Centre for Geomagnetism.

Our study focused on papers published between 1960 and 2020, two papers from the 
first half of 2021, and historical articles and books published between 1953 and 1959.

In our review, we cite in total 165 papers and 8 books. Most papers deal with nar-
row subject areas concerning one particular group of organisms, e.g. “Magnetoreception 
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in plants” (Galland and Pazur 2005) and “Magnetic orientation in birds” (Wiltschko and 
Wiltschko 2005) or on specific topics like “Biological effects of the hypomagnetic field: 
An analytical review of experiments and theories” (Binhi and Prato 2017) and “Biological 
effects due to weak magnetic field on plants” (Belyavskaya 2004).

The Geomagnetic Field and the Origins of Life on Earth

The geomagnetic field is thought not only to protect life on Earth, but it also may have 
contributed to its origins, both directly and indirectly. Its indirect role is associated with 
the stabilising influence on the environment in which life was developing. This includes: 
protecting the atmosphere and thus maintaining relatively stable environmental parame-
ters, e.g. reduced temperature variation and water in the liquid state, and later the oxidising 
atmosphere and the ozone layer.

The GMF protects Earth against the solar wind that constantly blows towards it. The solar 
wind is mainly a stream of ionised hydrogen atoms, protons, and electrons emitted by the 
Sun (Geiss et al. 1995; Galvin et al. 1996). If it was not for the GMF, the energy carried by 
wind particles would be transferred directly to the particles of the atmosphere, giving them 
additional velocity in the anti-sunward direction. As a result, they would be able to over-
come Earth’s gravity and escape into the interplanetary space, thus depriving Earth of a sig-
nificant portion of its atmosphere. A similar process may have determined the atmospheres 
of Venus and Mars. Chemical signatures in these planets’ atmospheres imply that at some 
point they had had atmospheres similar to Earth’s, but they changed when lighter elements 
from their atmospheres (i.e. hydrogen and oxygen) had been lost, probably partially due to 
the solar wind and the lack of stable, dipole magnetic field similar to the GMF (Luhmann 
and Bauer 1992; Svedhem et al. 2007; Futaana et al. 2008; Lammer et al. 2018). Dense and 
rich ‘greenhouse gases’ in Venus’s atmosphere are believed to have lost their lighter ele-
ments due to the solar wind (Lammer et al. 2006). Although it is only a speculation, without 
the GMF, oxygen, which is a gas significantly lighter than carbon dioxide, hydrogen sul-
phide or other gases in Earth’s early atmosphere, would probably be easily blown away by 
the solar wind as soon as it appeared in the atmosphere. What is more, apart from oxygen, 
other lighter gases, such as hydrogen and nitrogen, would escape into the space faster than 
they could be produced by chemical reactions on Earth and in its atmosphere. Only heavier 
gases, i.e. carbon and sulphur oxides, would be able to stay close to Earth’s surface. As a 
result, Earth’s atmosphere would resemble that of Venus (Krasnopolsky and Parshev 1981; 
Lammer et al. 2006, 2018; Svedhem et al. 2007).

As far as Mars is concerned, its magnetic field is weaker than Earth’s, and it exists solely 
due to the magnetisation of the surface rocks. In fact, it is not a planetary field and as such 
it lacks a dipole structure which would protect Mars’s atmosphere from being blown away. 
Besides, the smaller mass of the red planet let the solar wind tear the atmosphere easily 
away, which in turn resulted in the disappearance of surface water bodies. So, had it not 
been for the protective influence of the GMF, Earth’s oxidising atmosphere could not have 
emerged and persisted. The examples of Venus and Mars show what happens to the atmos-
pheres of planets which did not develop their inner magnetic fields or lost them earlier on.

Moreover, if Earth failed to have the GMF, solar wind particles that reach the atmos-
phere would react with atmospheric gases, such as molecular (diatomic) nitrogen  (N2) and 
oxygen  (O2), and thus result in the formation of nitrogen oxide (NO), which would then 
react with ozone  (O3) (McElroy and McConnell 1971; Revell et al. 2012; Michalski et al. 
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2014). The product of the reaction, nitrogen dioxide  (NO2), reacts with free radicals of 
oxygen and forms NO and diatomic oxygen. Eventually, as a result of the decomposition of 
a single ozone molecule bonded with a single free oxygen atom, two diatomic molecules 
of oxygen are formed (McElroy and McConnell 1971; Revell et al. 2012; Michalski et al. 
2014). In the atmosphere protected by the GMF these reactions also take place, but on a 
much smaller scale. Most of solar wind particles are deflected from the magnetosphere, 
and only a small fraction of these highly energetic particles occasionally reaches the atmos-
phere, igniting the process (Rao 1980). If the GMF was absent, this chain of reactions 
would continue until the ozone layer was completely destroyed and life with the aerobic 
metabolism would have no chances to develop (Rao 1980).

The absence of the GMF causes frequent climatic changes that impose severe weather 
instability. Such a situation happens when there is no GMF and cosmic rays reach Earth. 
Like the solar wind, cosmic rays consist of high energy particles, consisting of 89% pro-
tons, 10% α-particles (helium nuclei), and 1% of other heavy particles (Mewaldt 1996), 
coming from beyond the Solar System. Among the greatest effects of cosmic rays on the 
atmosphere there is an increase of ionisation of air particles. The ionisation of lower lay-
ers of the atmosphere affects a vertical flow of currents between cloud layers and their 
electrical potential. This phenomenon results in the formation of ice structures in clouds. 
Therefore, an increased amount of cosmic rays decreases the amount of solar energy reach-
ing Earth’s surface, leading to significant climate cooling. However, the rays are attenuated 
by magnetic fields of the Sun and Earth, then by Earth’s atmosphere, rarely reaching the 
surface of Earth.

Apart from the above indirect contribution to the origins of life on Earth, the GMF 
could have also had a direct influence, because the GMF controls the access of cosmic 
rays and solar wind particles. Both are suspected to be possible energy sources needed for 
the abiotic formation of biologically significant molecules, and thus indirectly responsible 
for the initiation of prebiotic evolution (Miller and Urey 1959). In that case, the existence, 
quality, and strength of the GMF had a prevailing influence on the origins of life on Earth.

The Impact of Earth’s Geomagnetic Field on Living Organisms

From the very beginning of their existence, living organisms functioned in the presence of 
the GMF (Belyavskaya 2004; Borlina et al. 2020) and they need its presence to function 
properly (Dubrov 1978; Erdmann et al. 2017) on all levels of biological organisation, i.e. 
cells, tissues, organs and whole organisms.

The GMF, like any other magnetic field, is able to influence, not only ferromagnetic 
materials like iron, or nickel, but also paramagnets like oxygen, sodium, and diamagnets 
like zinc, magnesium, copper, phosphorus, water, DNA, many proteins, and even water 
molecules (Janicki 2008), which are all important for the regulation of cellular processes. 
Available data including the impact of the GMF’s absence, known as hypomagnetic condi-
tions, indicate that the GMF influences: (1) water properties (Janicki 2008); (2) simple and 
facilitated ion diffusion across membranes (Mika 1996; Zaguła et al. 2011); (3) chromatin 
condensation (Belyaev et al. 1997); (4) DNA replication (Liboff  1984); (5) gene expres-
sion (Blank and Goodman 1997; Mo et al. 2014a); (6) cell cycle (Mo et al. 2013; Surma 
et al. 2014; Bertea et al. 2015); (7) enzymes activity (Nossol et al. 1993; Zhang et al. 2017) 
as well as the activity of non-enzymatic proteins including haemoglobin (Janicki 2008) and 
calmodulin (Markov and Pilla 1994, 1997); (8) the functioning of mitochondria (Fu et al. 
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2016); (8) cytoskeleton and cell morphology, adhesion, proliferation and migration (Mo 
et al. 2014b, 2016; Fu et al. 2016), and (9) cell differentiation to, for example, osteoblasts 
and muscle cells (Surma et al. 2014; Zhang et al. 2014).

The GMF is also important for the functioning of multicellular organism (Fesenko et al. 
2010; Mo 2012; Bertea et al. 2015). For instance, cardiovascular and nervous systems have 
been proven to be most sensitive to changes in the magnetic field. This sensitivity of the 
cardiovascular system can be explained mainly by the presence of haemoglobin which con-
tains large amounts of iron ions (Janicki 2008). An analysis of medical records indicates 
that geomagnetic storms, i.e. disturbances in Earth’s magnetosphere caused by bursts of 
radiation and charged particles emitted from the Sun during coronal mass ejection (Andre 
et al. 1998), may contribute to the myocardial infarction development, although the under-
lying mechanism may differ for mid- and high latitudes (Samsonov et al. 1960).

First studies on magnetoreception in plants were conducted as early as the mid-twentieth 
century, however, little is known about their magnetoreception and sensitivity to the GMF 
when compared to animals and bacteria. Magnetised water facilitates plant growth, increases 
fertility, and yields a better harvest (Fernandez et al. 1996; Teixeira da Silva and Dobránszki 
2014; Abedinpour and Rohani 2017). Studies on the effects of constant and variable magnetic  
fields on various species of plants, including fruit trees and shrubs, show that seeds germinate  
faster under the operating field. The GMF also facilitates differentiation of tissues 
and organs in young plants which leads to an overall faster growth (Rochalska 2007).  
It has been also demonstrated that even slight changes in the GMF, caused by a modulation 
of the amount of solar radiation that reaches Earth’s surface, may influence the condition 
of plants. Numerous studies show that magnetic storms have a negative impact on plants as 
they may lead to anomalies in nucleus and chromosomes, e.g. widespread emergence of cells  
with polyploid nuclei or the so-called huge nuclei as well as polynucleated cells (Nanush’yan 
and Murashev 2003). Furthermore, like in animal cells, by modulating ion channels the mag-
netic field affects the transport of chemical substances between cells as well as the activity of  
enzymes and the frequency of cell division (Galland and Pazur 2005).

Studies on Life in Hypomagnetic Conditions

The absence or significant weakening of the GMF is called hypomagnetic conditions/
hypomagnetic field (HMF) or a Super Weak Magnetic Field (SWMF), however, the terms 
are not interchangeable. Much research on the effects of hypomagnetic conditions on living 
organisms was performed in the USA and the former USSR in 1960s and 1970s (Dubrov 
1978), and since the early 2000s in other countries, including China, Canada, Japan, Italy,  
and Romania (Binhi and Prato 2017). Most of the recent studies were summarised  
and reviewed by Binhi and Prato (2017). The authors showed that a vast majority of studies  
conducted in hypomagnetic conditions on all sorts of organisms (bacteria, plants, and ani-
mals, both vertebrates and invertebrates) demonstrated visible biological effects of hypomag-
netic conditions. Their work also implied that those effects were in fact related directly to  
nonspecific magnetoreception (Binhi and Prato 2017). However, the results of those studies  
remain ambiguous in some respect. On the one hand, some bacteria species were nega-
tively affected. For example, when colonies of Staphylococcus aureus Rosenbach,  1884   
were cultured in hypomagnetic conditions, their colony size and number decreased. Other 
bacteria cultured in hypomagnetic conditions suffered phenotypic changes of shape and  
size (e.g. Azotobacter sp.) accompanied by considerable changes in metabolism (e.g. some 
Escherichia coli Migula,  1895  strains which lost their ability to ferment maltose). On  
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the other hand, the growth of E. coli was more rapid in hypomagnetic conditions than in 
typical magnetic conditions (Dubrov 1978). Besides, Shigella sonnei Weldin,  1927  and 
Staphylococcus, Salmonella, Klebsiella, Escherichia species developed antibiotic resist-
ance much faster in hypomagnetic conditions (Dubrov 1978). All in all, it cannot be une-
quivocally determined if such changes are clearly negative or positive, but definitely they  
are a reaction to hypomagnetic conditions.

Furthermore, the absence of GMF or weak GMF induces severe dysfunctions in ani-
mals, including humans. Research conducted by NASA on mice showed decreased enzyme  
activity in cells obtained from mice kept in hypomagnetic conditions (Conley 1970). Even 
earlier before that discovery, there had been speculations that a long-term absence of the 
magnetic field could cause a serious change in their behaviour (cannibalism) and shorten 
their lifespan as well as bring about other physiological (infertility) and histological (diffuse 
tissue hyperplasia) dysfunctions (Dyke 1965; Conley 1969). Further studies also revealed that 
hypomagnetic conditions could inhibit early embryogenesis (Osipenko et al. 2008a, 2008b) 
and reproduction capacity (Fesenko et  al. 2010), impair learning abilities and memory of 
adult male mice (Wang et al. 2003), and even inhibit stress-induced analgesia in male mice 
(Seppia et al. 2000; Prato et al. 2005). Other experiments demonstrated that even a short stay 
of living organisms in hypomagnetic conditions led to noticeable changes in enzymatic reac-
tions and cell divisions of fibroblasts (Sosunov et al. 1972) as well as animal behaviour, i.e.  
caused an increase in anxiety among the tested male mice (Ding et  al. 2019). Studies on  
rats indicated that hairs of animals shielded from the GMF contained lower levels of certain 
elements, such as iron, manganese, copper, and chromium, than hairs of animals not shielded 
from the GMF (Tombarkiewicz 2008). Finally, an exposure of multiple generations to the 
hypomagnetic conditions resulted in amnesia of Drosophila (Sophophora) melanogaster 
Meigen,  1830  (Zhang et  al. 2004), whereas chickens needed additional noradrenaline for 
memory consolidation (Xiao et al. 2009). Even anhydrobiotic abilities of tardigrades were  
inhibited due to a partial isolation from the GMF (Erdmann et al. 2017). In summary, tardigrades  
manifested increased mortality after exposure to hypomagnetic conditions (Erdmann et  al. 
2017, 2021).

The first studies on the influence of hypomagnetic conditions on humans were con-
ducted in the 1960s and concerned the health of astronauts in hypomagnetic conditions 
in the outer space (Becker 1963; Beischer and Miller 1964; Dubrov 1978). These studies 
showed changes in calcium homeostasis and circadian rhythms as well as a reduced num-
ber of erythrocytes. Subsequent tests revealed that a long-term absence of the magnetic 
field induced sleep disturbance (Dubrov 1978), thus supporting a hypothesis on the nega-
tive impact of the GMF on human health. Other studies specifically targeted to estimate 
the impact of hypomagnetic conditions on human health showed that a three-day isolation 
from the magnetic field resulted in decreased metabolism, gastrointestinal diseases and a 
decrease in the number of leukocytes in blood (Dubrov 1978; Janicki 2008). What is more, 
such functions of the human brain as learning and memorising were also affected (Binhi 
and Sarimov 2009, 2013).

Apart from the influence on animal and human cells and tissues, hypomagnetic conditions 
have a negative influence on the development of plants. For example, hypomagnetic conditions  
causes characteristic changes in the root meristem in pea (Pisum sativum Linnaeus,  1753),  
common flax (Linum usitatissimum Linnaeus, 1753) and lentils (Lens culinaris Medikus, 1787). 
These changes included a partial reduction of the meristem, disruption of protein synthesis and 
accumulation of lipids as well as a reduction of the organelle’s growth, the amount of phyto-
ferritin in plastids and crista in mitochondria (Belyavskaya 2001; Galland and Pazur 2005).  
All of these changes were accompanied by a more rapid increase of the epicotyl (Negishi et al.  
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1999). However, it turned out that not all plants reacted in the same extent to a weakened  
magnetic field. For instance, soya grown in magnetic conditions typical for Mars did not dis-
play any changes in water absorption or germination of seeds (Mo et  al. 2011). Moreover,  
seed germination rate of other plants, e.g. French marigold (Tagetes patula Linnaeus, 1753), 
pot marigold (Calendula officinalis Linnaeus, 1753), rye (Secale cereale Linnaeus, 1753) and 
alfalfa (Medicago sativa Linnaeus, 1753) was the same in hypomagnetic conditions (near zero 
T) as in the normal GMF (Teixeira da Silva and Dobránszki 2016). On the other hand, seed 
germination rates of other higher plants, e.g. cabbage (Brassica oleracea Linnaeus, 1753), was 
decreased and seedlings development retarded when exposed to a magnetic field in the range  
of 100 nT to 0.5 mT (Teixeira da Silva and Dobránszki 2016; Tsetlin et al. 2016). Lastly, there 
are hardly any studies on the effect of hypomagnetic conditions on fungi and protists (Pazur 
et al. 2007). One of the few such studies on lower fungi (Aspergillus and Penicillium) showed 
no significant changes in their multiplication (Dubrov 1978).

In conclusion, there is no doubt that the HMF has an effect on living organisms, how-
ever, no noticeable connection between the magnitude of this effect and physical condi-
tions (field magnitude, magnetic field inhomogeneity, type and duration of exposure) has 
been found (Binhi and Prato 2017).

Magnetotaxis and Magnetonavigation

Living organisms have many different types of senses depending on stimuli and sources 
of information. Yet, there are two types of signals that are available in the same extent 
throughout the globe, i.e. gravity and the GMF. Both are very good sources of informa-
tion, accessible everywhere, independent from light availability (at night, in oceans depths, 
underground) or weather conditions. The magnetic field freely penetrates internal organs 
so an organism’s magnetic sense does not require any external sensory organs. Moreover, 
the GMF sensors can be located in any part of the cell/body, because magnetic energy dif-
fers from other energy forms (except gravity) that penetrate tissues only to a specific depth 
(Mika 1996).

Magnetoreception

Even simple organisms, for example bacteria Magnetospirillum sp.  (Kirschvink et  al. 
1985), Magnetovibrio sp., and Magnetococcus sp. (Yan et  al. 2012), and some archaea 
(Gorobets et  al. 2017) can navigate in the magnetic field, an ability known as magne-
totaxis (Kirschvink et  al. 1985). Bacteria were first described in 1975 to be capa-
ble of magnetotaxis, owing to their iron-rich intracellular inclusions (Frankel et  al.  
1979; Kirschvink et al. 1985). Intracellular inclusions, called magnetosomes, contain mag-
netite crystals  (Fe3O4), and to a lesser extent greigite crystals  (Fe3S4) (Posfai and Dunin- 
Borkowski 2006; Posfai and Dunin-Borkowski 2009). The greigite-based magnetosomes 
were reported only in magnetotactic bacteria from anaerobic, brackish and marine aquatic 
habitats containing significant amounts of  H2S (Pósfai et al. 1998). Both types of crystals 
have a similar size range from 30 to 120 nm (mostly from 60 to 90 nm), they usually have 
an elongated shape and contain a single magnetic domain (Pósfai et al. 1998; Posfai and 
Dunin-Borkowski 2009).

The direction of magnetisation of individual crystals in magnetosomes is defined by the 
grain size, shape and crystallographic layout. When crystals form a complex system, the 
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strength and direction of their magnetisation is also affected by the neighbouring crystals 
(Bazylinski and Frankel 2004). It has been observed that bacterial cells closely monitor 
the layout of crystals in the chain (Simpson et al. 2005). A magnetosome formation pro-
cess is very complex: it comprises a formation of vesicles, transport of iron, nucleation, 
growth of magnetite crystals, and finally magnetite crystals connecting into chains (Wang 
and Liang 2009; Posfai and Dunin-Borkowski 2006). It also involves many proteins which 
control the process of crystals’ nucleation (i.e. MamG, MamF, MamD and MamC proteins) 
and maintain the correct orientation and function of magnetosomes (MamK and MamJ) 
(Wang and Liang 2009). In addition, magnetite crystal chains may be embedded in the 
protein core and surrounded by a phospholipid bilayer, e.g. in bacteria Magnetospirillum 

magnetotacticum Maratea and Blakemore (1981) and M. gryphiswaldense Schleifer et al. 
(1991) (Watanabe et al. 2009). The protein core is formed by cytoskeleton proteins simi-
lar to tubulin (Watanabe et al. 2009). There is also a ftsZ-like protein which exhibits high 
similarities to proteins of several other non-magnetotactic bacterial and Archaean species, 
i.e., E. coli, Bacillus subtilis (Ehrenberg, 1835), B. anthracis Cohn, 1872 and Pyrococcus 

abyssi Erauso et al., 1993, although it exists in this form only in Magnetospirillum strains 
(Ding et al. 2010). Its exact role is unknown, however, studies showed that disturbances in 
the formation of magnetosomes were noted in bacteria with mutations in the Fts-Z encod-
ing gene. In this case magnetosomes contained mainly superparamagnetic crystals and had 
poorly defined morphology (Ding et al. 2010).

There are two different ways which enable magnetotactic bacteria to able detect the mag-
netic field: axial magnetoreception and polar magnetoreception. For example, the M. mag-

netotacticum AMB-1 strain shows axial magnetoreception, which means that it passively 
orientates itself on the magnetic field and may actively move along the lines of force of the 
magnetic field in both directions from the magnetic pole to the magnetic equator although 
without any preference towards the magnetic north or south. Conversely, the Magnetococcus 
sp. MO-1 strain displays polar magnetoreception, so it moves parallel to the lines of the field  
(to the north magnetic pole, i.e. to south) or antiparallel (going up to the south magnetic 
pole, i.e. to north), thereby showing preference towards polarity (Lefevre et  al. 2009). A 
single cell equipped with one or more magnetosomes can be regarded as a magnetic dipole,  
akin to a compass needle with a magnetic moment. The GMF acting on such a  
dipole generates a torque. As long as the magnetic energy of such a cell is at least ten times  
larger than its thermal energy, the cell will be directed according to the external magnetic 
field, which is sufficient for effective navigation in Earth’s magnetic field (Bazylinski and  
Frankel 2004).

Magnetosomes were also found in some single-cell eukaryotes, such as Phytoflagellata 
and Anisonema (Euglenophyceae). Their cells contain thousands of magnetite crystals, 
which are very similar to those in magnetotactic bacteria. However, the origin of these 
magnetosome-like structures is still unknown. It is presumed that some protists are able to 
perform biomineralisation of endogenous magnetic particles. On the other hand, several 
observations indicate that some of them do not have this ability and absorb crystals from 
magnetotactic bacteria which they consume (Torres de Araujo et al. 1986; Bazylinski et al. 
2000; Galland and Pazur 2005).

Magnetofossils, i.e. magnetite nanocrystals of organic origins, are found in rocks of 
various ages. Presumably, the oldest fossils of this type come from layers formed 2.8 bil-
lion years ago (Kopp and Kirschvink 2008). Their shape, size and morphology resemble 
bacterial magnetosomes (Gehring et  al. 2011; Chang et  al. 2012). The fact that these 
advanced magnetically sensitive structures are present both in present-day and prehis-
toric bacteria may indicate that magnetoreception is indeed a very early adaptation.
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The first animals found to have the ability of magnetonavigation were birds, i.e. the 
European robin (Erithacus rubecula (Linnaeus, 1758)) (Wiltschko and Merkel 1966). Since 
then, this ability has been confirmed to be present in Platyhelminthes, molluscs, crusta-
ceans, insects and all groups of vertebrates (Wiltschko and Wiltschko 2005; Johnsen and 
Lohmann 2008; Wajnberg et al. 2010; Ernst and Lohmann 2016; Mouritsen 2018; Yosef  
et  al. 2020). In fact, ecological and behavioural aspects of the use of the magnetic field 
as a source of information have been studied fairly well. Two mechanisms have been  
described that can help to explain magnetoreception in animals, i.e. the Magnetite-Based 
Mechanism (MBM) and the Radical Pair Mechanism (RPM).

The MBM is based on magnetite lumps (Malkemper et al. 2016) and it is very simi-
lar to magnetosomes found in bacteria. Various structures can play a role of the MBM 
detector, from magnetite crystals with a single magnetic domain or multidomain crystals 
to small crystals with superparamagnetic properties. Single-magnetic domain crystals 
were found, for example in honey bees (Apis mellifera Linnaeus, 1758) (Wajnberg et al. 
2010), chitons (Lowenstamm 1962) and Osteichthyes (Wiltschko and Wiltschko 2006). 
In cetaceans, apart from single-domain crystals, multidomain crystals were also found 
(Posfai and Dunin-Borkowski 2009). Tiny crystals with superparamagnetic properties 
have been observed in nematodes, termites, doves, cetaceans and humans (Kirschvink 
et al. 1992; Cranfield et al. 2004; Posfai and Dunin-Borkowski 2009). Like in the case 
of bacteria, magnetite is not the only mineral used in animal magnetoreception, because 
maghemite (γ-Fe2O3) crystals were found in homing pigeons and even humans (Frankel 
et al. 1979). Moreover, also particles of hematite  (Fe2O3) were found in humans, how-
ever their function remains unknown (Posfai and Dunin-Borkowski 2006).

Posfai and Dunin-Borkowski (2009) suggested that the magnetoreception system 
of animals resembled chains of single-magnetic domain crystals recognised in bacte-
ria. According to these authors, the magnetic field opens ion channels by deflection of 
the chains, thus leading to depolarisation of the cellular membrane and transmission 
of signals to the brain (Walker et al. 2002). However, other authors claim that magne-
toreception is possible due to a system of superparamagnetic crystals with dimensions 
of 2–5 nm that do not have a permanent magnetic moment (Davila et al. 2003). These 
crystals are located in vesicles which change their shape in the presence of a constant 
magnetic field. Due to such deformation, the vesicles attract or repel each other, leading 
to a deformation of the membrane to which they are attached. So, it causes an opening 
of ion channels transmit signals to the central nervous system (Davila et al. 2003).

The RPM appears to be evolutionarily younger than the MBM (Malkemper et  al. 
2016). It is responsible for a more advanced system of magnetoreception, which enables 
animals to determine the direction and position of the poles as well as construct a mag-
netic map in their memory. This mechanism was taken into consideration when it turned 
out that birds’ spatial orientation was impaired when they had one eye covered (espe-
cially the right one). Accordingly, it was concluded that the location of the magnetic 
sense of those animals may be associated with the structure of their eyes (Wiltschko and 
Wiltschko 2006). Studies from the 1970s and 1980s addressed a hypothesis formulated 
by Schulten et  al. (1978) that assumed that in some organisms, including birds, there 
must be a chemical compound that reacted both to light and the magnetic field (Schulten 
and Windemuth 1986). Further research confirmed that cryptochromes, special pig-
ments located in the retina, were responsible for that process (Ritz et  al. 2000; Hand 
2016; Pinzon-Rodriguez and Muheim 2017). These pigments are common, as Schulten 
et  al. (1978) suspected, in the eyes of many animal species, including humans (Foley 
et al. 2010).
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Cryptochromes are flavoproteins containing flavin adenine dinucleotide (FAD) They are 
members of the same family of proteins as photolyases (Hore and Mouritsen 2016). Due  
to a reaction triggered by green, blue or UV light, cryptochromes absorb a quantum of  
light, and a pair of free radicals is formed, comprising FAD and one of the protein amino acids  
(Biskup et al. 2009; Zhang et al. 2015). Then, a conversion between singlet and triplet states 
occurs and this process is modulated by the magnetic field. The direction of the field’s line 
of induction relative to the position of molecules conditions the parallel orientation of spins 
for the triplet state and antiparallel for the singlet state. Thus, a formed pair of radicals with 
a given spin participates in a reaction whose final product is dependent on the spin direction 
(Wiltschko and Wiltschko 2006). In the case of animals having cryptochromes in their eyes, 
it may be concluded that the role of the GMF is visible. It is assumed that radical pair sin-
glet and triplet states influence a transfer of stimuli from the eye to the central nervous sys-
tem and/or these products modify the sensitivity of light-sensitive receptors. Consequently, 
information reaching the brain is distorted, and it may cause changes in the brightness of 
a given location depending on the position of the animal’s eyes relative to the lines of the 
GMF (Pinzon-Rodriguez and Muheim 2017; Ritz et al. 2002; Juutilainen et al. 2018).

Animals use their senses like a compass to detect the GMF axis and determine direc-
tions. Research show that there are two types of the magnetic compass, i.e. an inclina-
tion compass and a polar compass (Wiltschko and Wiltschko 2006). They detect various 
properties of the GMF and follow different magnetoreception mechanisms (Wiltschko and 
Wiltschko 2005; Wajnberg et al. 2010). The inclination compass is sensitive to light, so it 
is connected with the presence of the RPM, whereas the polar compass is insensitive to 
light and therefore must use other mechanisms of magnetoreception, probably related to 
the MBM (Ritz et al. 2002; Wajnberg et al. 2010). To determine directions, the inclination 
compass uses the angle between the geomagnetic vector and the surface of the planet. It is 
worth noticing that animals which use this type of compass do not differentiate between 
north and south, but only between the direction ‘to the pole’ and ‘to the equator’. Therefore, 
changes in the vertical or horizontal component of the GMF cause changes in movement 
directions (Wiltschko and Wiltschko  1996). Animals which use the inclination compass 
include insects, amphibians, sea turtles (Lohmann 1991; Lohmann and Lohmann 1993) 
and birds (Wiltschko and Wiltschko 2006; Vacha et al. 2008). The polar compass, which is 
based on the perception of the horizontal component of the GMF, does not sense changes 
in the vertical component. So, animals which use it, can differentiate between the north 
and the south pole (Wiltschko and Wiltschko 1996). This group features crustaceans, bony 
fish, and mammals (Lohmann et al. 1995; Wiltschko and Wiltschko 2006). However, dur-
ing long-distance migrations, the magnetic compass alone is often insufficient for accurate 
navigation. It has been confirmed that both the inclination and the intensity of the GMF in 
a given place on Earth may constitute a source of information for the animal on its exact 
location (Lohmann et al. 2007). In a way, this natural navigation system may provide ani-
mals with information on their geographic location and help them choose the correct route 
to the destination. This type of navigation is often called a magnetic map, but some scien-
tists consider the term to be vague and misleading (Lohmann et al. 2007). Many animals 
that use magnetic maps, e.g. salmons (Putman et  al. 2013, 2014a, 2014b; Scanlan et  al. 
2018; Lohmann and Lohmann 2019) and sea turtles (Lohmann et  al. 2001, 2004, 2012; 
Putman et  al. 2011; Lohmann and Lohmann 2019) are able to periodically update their 
magnetic map in vital areas, i.e. nesting sites, while visiting them, and thus avoid or reduce 
the number of errors that might occur due to the secular variation (Brothers and Lohmann 
2015; Lohmann and Lohmann 2019). Although little is still known what operational prin-
ciples these systems adhere to, it is assumed that there are various types of magnetic maps,  
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for example one- and two-dimensional. One-dimensional maps are simpler and based on 
changes of only one parameter of the GMF, either inclination or intensity. However, in 
favourable conditions, the map may be sufficient for locating any point on Earth (Lohmann  
and Lohmann 2006) and some sea turtles are thought to be using this type of magnetic map 
(Lohmann et al. 2007). Two-dimensional maps are based on both parameters (inclination 
and intensity) simultaneously. Moreover, some animals may use different magnetorecep-
tion strategies at different stages of their lives. For instance, young turtles, Caretta caretta  
(Linnaeus 1758) are believed to use two- dimensional magnetic maps based on a system of  
magnetic orientation points of a given/relevant inclination and intensity. On the other hand,  
mature turtles use one-dimensional map and move along isolines of the GMF until  
they reach their destination (Lohmann et al. 2007). Nevertheless, it should be remembered 
that most animals probably do not see any map image; instead, they compare the intensity 
and/or inclination of the GMF in a given place with the data of their destination (Lohmann  
et al. 2007).

Animal Magnetonavigation

Regardless of which map animals use, one- or two-dimensional, they navigate in three dif-
ferent ways. Firstly, they move towards a known point according to the gradient of the incli-
nation and/or intensity of the GMF, e.g. young green sea turtles (Chelonia mydas Linnaeus,  
1758) (Avens and Lohmann 2004; Lohmann and Putman 2007), and the Caribbean spiny 
lobster (Panulirus argus Latreille, 1804) (Boles and Lohmann 2003; Lohmann et al. 2007). 
Secondly, they find an isoline and move along it until they find the desired location, e.g. sea 
turtles (Lohmann et al. 2007, 2008; Brothers and Lohmann 2015). Finally, some animals may 
also utilise the strategy of moving according to orientation points, i.e. areas with remembered 
parameters of the GMF, where they change the direction of the movement, e.g. nightingales 
Luscinia luscinia (Linnaeus, 1758; Fransson et al. 2001; Kullberg et al. 2003; Lohmann et al. 
2007) and rock pigeons Columba livia Gmelin, 1789. For short distances, rock pigeons use 
orientation points they know and move along known routes, even if they are longer than the 
optimal way (Biro et al. 2004). On top of that, some animals combine two of these scenarios. 
For example, the European pied flycatcher Ficedula hypoleuca  (Pallas,  1764) uses orienta-
tion points on the route from Central Europe to Spain, and it changes the direction and goes 
towards a known point in the Central Sahara according to the gradient of the inclination and/ 
or intensity of the field (Lohmann et al. 2007).

Magnetonavigation is also used at different distances. Long-distance navigation 
was studied on monarch butterflies Danaus plexippus  (Linnaeus,  1758) (Wajnberg 
et al. 2010), sharks (Klimley 1993), sockeye salmons Oncorhynchus tnerka (Walbaum,  
1792) (Walker 1997) and robins (Wiltschko and Merkel 1966). Also, cetaceans 
determine directions during their long migrations using the GMF (Walker 1992).  
Then, shorter distances are covered by the Caribbean spiny lobster (Boles and Lohmann  
2003; Lohmann et al. 2007), ants Pachycondyla marginata Roger, 1861 (Wajnberg et al.  
2010) and the salamander Notophthalmus viridescens (Rafinesque, 1820) (Fisher et al. 
2001; Phillips et al. 2002; Lohmann et al. 2007).

Yet, the magnetic sense does not have to be connected only with migrations. For exam-
ple, mammals from the family Spalacidae, Spalax ehrenbergi  (Nehring, 1898), and mole 
rats from the genus Cryptomys which spend most of their life underground, use navigation 
to move inside their burrows (Kimchi et al. 2004), while honey bees use magnetic stimuli 
as a source of information on the location of food sources, and worker bees are able to  
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pass this information to one another and such a transfer most probably also includes the GMF  
data (Wajnberg et  al. 2010). An interesting example is also magnetic alignment, which 
means that an animal aligns its body axis with the lines of the GMF, as it was observed 
in many invertebrate and vertebrate species. This intriguing behaviour is demonstrated 
by animals very well-known for their magnetonavigation abilities, such as birds (Bianco 
et al. 2019), but also many species of mammals whose magnetonavigation abilities have 
not been considered, yet. For instance, cattle, the European roe deer and red deer posi-
tion themselves along the north–south axis when resting or feeding (Begall et  al. 2008; 
Burda et al. 2009; Slaby et al. 2013; Belova and Acosta-Avalos 2015). Similarly, dogs align 
their body along the north–south axis during defecation (Yosef et al. 2020). In fact, numer-
ous studies show that among vertebrates magnetic alignment behaviour typically coincides 
with the north–south magnetic axis, but mean directional preferences of animals are often 
rotated clockwise from the north–south axis (Malkemper et al. 2016; Červený et al. 2011; 
Begall et al. 2013; Hart et al. 2013). Still, mechanisms of this phenomenon and its possible 
adaptive significance remain unknown (Malkemper et al. 2016). Also, research reveal that 
animals use the GMF to some degree when they select locations for their lairs and rutting 
(Tombarkiewicz et al. 2010). It has also been proven that deer, wild boars and otters prefer 
areas free of the GMF disturbances for their lairs and burrows. On the other hand, badgers 
select areas of the inhomogeneous magnetic field for their burrows (Tombarkiewicz et al. 
2010), whereas it is suggested that compass termites (Amitermes meridionalis Froggatt,  
1898) may build and repair their mounds by using magnetic cues (Jacklyn and Munro 
2002).

Magnetoreceptors have been noticed in many species that do not display behaviour 
dependent on the GMF. Magnetite, maghemite and hematite crystals (see section ’Mag-
netoreception’) have also been discovered in the human brain (Yang et al. 2017; Gorobets 
et al. 2017; Posfai and Dunin-Borkowski 2009), and cryptochromes (see section ’Magne-
toreception’) in retina (Kirschvink et  al. 1992). These magnetoreceptors have been con-
firmed to be active (Foley et al. 2010), however, their purpose remains yet to be addressed 
(Nishimura et al. 2014).

In conclusion, most animals, if not all, including humans possess at least one of the 
above magnetoreception mechanisms which enable or can enable magnetonavigation. 
According to the available data, animals use their magnetoreceptors to a different extent, 
but the very fact they exist means that the GMF detection is very important.

Magnetoreception of Plants and Fungi

Currently, plant magnetoreception mechanisms are thought to be similar to those found in 
animals, i.e. magnetoreception based on the presence of ferromagnetic crystals (MBM) or 
the RPM connected with the presence of cryptochromes. Besides, a mechanism based on 
ion cyclotron resonance is proposed as an alternative explanation of magnetoreception in 
plants (Galland and Pazur 2005).

An example of plant magnetoreception is demonstrated by roots of some plants which 
are oriented along the east–west axis. Wheat (Triticum aestivum Linnaeus, 1753) roots grow 
parallel to the horizontal component of the GMF, whereas storage roots of beet (Beta vul-

garis Linnaeus, 1753) grow in the direction of the GMF activity (Galland and Pazur 2005). 
Then, it has been shown that seeds placed with their longer axis parallel to the lines of the 
GMF germinate and grow faster (Kobayashi et  al. 2004), e.g. barley (Hordeum vulgare 
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Linnaeus,  1753), common flax, oat (Avena sativa Linnaeus,  1753), rye, maize (Zea mais 
Linnaeus, 1753), pea, and wheat (Galland and Pazur 2005; Pittman 1963).

In the case of magnetoreception and magnetonavigation in fungi little is known and 
studies on this topic have been extremely limited (Pazur et al. 2007).

The Impact of the Geomagnetic Reversal

The GMF has properties of a constant field; however, it undergoes periodic changes. 
These include temporary disturbances caused by magnetic storms as well as  
long-term alternations, e.g. a drift of geomagnetic poles (Dubrov 1978; World Data Center  
for Geomagnetism 2012; Livermore et al. 2020). It also experiences changes in the location  
of the magnetic poles, called the geomagnetic reversal (GMF reversal) or polarity reversal,  
which occur every several dozen thousands to several million years (Dubrov 1978, Prévot 
et al. 1985, Panovska et al. 2019). Though it has never happened during the existence of 
human civilisation, other hominids were witnesses to the last GMF reversal nearly 780 
thousand years ago (Panovska et al. 2019).

We do not know the exact nature of the GMF reversal. The only remnants of this phe-
nomenon are paleomagnetic records in the rocks. There are many hypotheses and theo-
retical models. Most of them suggest that the GMF reversal is a slow phenomenon last-
ing from 2,000 to 12,000 years, on average ca. 7000 years (Glassmeier and Vogt 2010; 
Clement 2004; Glatzmaier and Coe 2015). Some models assume that during the GMF 
reversal, Earth’s magnetic field decreases to ca. 10% of its current value (Glassmeier 
and Vogt 2010), because its internal component, whose GMF value amounts to 90–95%, 
disappears.

It is worth noticing that not all of polarity changes are fully stable, as soon after the rever-
sal the GMF returns to its previous polarity. Owing to such instabilities, some scientists clas-
sify those events as geomagnetic excursions, not as the GMF reversals (Panovska et al. 2019). 
Geomagnetic excursions are relatively short (a few hundred to more than 10 thousand years) 
changes in the field intensity of low latitude (up to 45° from the previous position) or even 
full reverses, but with the GMF returning to its previous polarity (Panovska et  al.  2019).  
Although the mechanisms driving the excursions and their relation to the GMF reversals  
are not fully understood, their ‘rapid’ nature makes them potentially harmful to life (Cooper 
et al. 2021).

The question is whether the GMF reversal can affect life on Earth. As early as in 1963, 
it was postulated by Uffen (Uffen 1963) that the weakening of the GMF would release par-
ticles trapped in the Van Allen radiation belts, which would strike Earth’s surface directly, 
and thus bring about changes and instability of the atmosphere. This would trigger signifi-
cant climate change and destabilisation of the ozone layer, which would lead to an increase 
of ionizing radiation including the UV radiation (Valkovic 1977). Also, because of the  
overall impact of the GMF on living organisms, a majority of the GMF changes would lead to  
a long-term deterioration of individual organisms’ health. Additionally, a lack of inverted 
magnetic poles could be problematic for organisms which use the GMF for navigation as 
their migration could be disturbed.

Yet, another question arises whether the GMF reversal could affect the health of indi-
vidual specimens as well as entire populations, and eventually cause mass extinction, as 
some scientists suggest. Regretfully, there is no satisfactory answer. The GMF reversal 
is an environmental change of an enormous scale, and definitely it can impact many ele-
ments of the biosphere. Historically, some GMF reversals were believed to be followed by  
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the emergence of new groups of organisms (Glassmeier and Vogt 2010), and several mass 
extinctions can be attributed to the GMF reversal, e.g. the Cretaceous-Paleogene mass 
extinction coincided with the GMF reversal (Crain 1971), however, Glassmeier and Vogt 
undermine the validity of such correlations (Glassmeier and Vogt 2010). In more recent 
studies new interconnection were noted. Wei and colleagues suggested a possible link 
between the increase of the GMF reversal frequency, observed decrease in oxygen level 
and marine species extinctions (Wei et al. 2014). Similarly, the Ediacaran extinction event 
is believed to have been caused by the GMF reversal (Meert et al. 2016). Present-day stud-
ies imply that geomagnetic excursions, e.g. Laschamp excursion (41 to 42 thousand years  
ago) and excursions identified in sediments of Brunhes Chron (nearly 13 thousand years ago)  
could have led to a regional extinction of large mammals (Channell and Vigliotti 2019). 
According to Cooper et al. (2021), the Laschamp excursion in combination with the Grand 
Solar Minima, initiated substantial changes in the concentration and circulation of the 
atmospheric ozone, increased atmospheric ionisation and ultraviolet (UV) radiation levels, 
leading to global climate shifts that caused major environmental changes. It was also sug-
gested that those environmental changes could have sparked a chain of events leading to 
the extinction of large mammals in Australia and Europe, and possibly to the extinction of  
Homo neanderthalensis (King 1864) and subsequent success of Homo sapiens Linnaeus   
1758 (Channell and Vigliotti 2019; Cooper et al. 2021). Similarly, large mammals’ extinc-
tions in North America and Europe 13 thousand years ago could be linked to geomagnetic  
excursions identified in sediments of Brunhes Chron.

Truth be told that even with these new premises, we still operate more in the realms of 
speculation. The existence of a link between polarity transitions and mass extinctions is 
possible, and the topic is worthy of a debate, however, new multidisciplinary studies are 
indispensable if we want to come closer to the final conclusion.

Implications for Astrobiology

A comparison between Earth and its two neighbouring rocky planets makes us fully aware 
of why astrobiologists assume that the planet’s possession of a stable planetary magnetic 
field (PMF) is considered to be a key factor determining the habitability of the very planet 
(Lammer et al. 2009; Cuartas 2018).

Planetary habitability is a measure of a celestial body’s ability to provide conditions suit-
able for the emergence and maintenance of life on its surface (Meadows and Barnes 2018). 
There are many factors influencing habitability of a planet (Papagiannis 1992; Lammer et al. 
2009): ranging from proper characteristics of the parenting star, the mass and size of the 
given celestial body, its distance from the star and its spinning rate, to plate tectonics and 
properties of the atmosphere (Papagiannis 1992; Lammer et al. 2009). However, five fea-
tures seem to be the most essential for the origins and development of life: most importantly 
liquid water (Meadows and Barnes 2018), ensured by stable temperatures, atmosphere, 
sources of energy and nutrients (Papagiannis 1992; Meadows and Barnes 2018). At least  
three of these features seems to be more likely to find on planets with the stable PMF (in the  
case of Earth the GMF), like it was shown by comparison of Venus, Earth, and Mars (see 
section ‘The geomagnetic field and origins of life on Earth’). Still, the problem is that  
unlike planets and moons of our Solar System, whose PMFs have been measured to some 
extent (Bland et al. 2008), exoplanets are currently impossible to be studied with regard to 
direct measurements of their PMFs, therefore precise predictions of structure and the source  
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of energy of those PMF are impossible to make (Cuartas 2018). So, to prepare models of 
those celestial bodies’ PMFs, some suppositions in terms of the possible composition and 
structure should be considered (Cuartas 2018; Zuluaga and Bustamante 2018).

Another issue that needs addressing from the point of view of astrobiology and future 
space missions is how terrestrial life could survive while living in magnetic conditions dif-
ferent from the GMF, e.g. in hypomagnetic conditions. Should Earth’s organisms, simple 
or complex, be able to survive in hypomagnetic conditions, manned space flights and plan-
etary protection policies would be affected (Erdmann et al. 2021). In this context, studies 
on the influence of the GMF and/or hypomagnetic conditions on Earth’s organisms (espe-
cially extremophiles) is of high importance (Erdmann et al. 2021).

Conclusions

The geomagnetic field (GMF) protects Earth from the solar wind and cosmic rays. In this 
way it helps to maintain Earth’s atmosphere and the ozone layer, ultimately stabilising con-
ditions on our planet and regulating the amount of energy reaching its surface. The influ-
ence of the GMF on living organisms cannot be underestimated, because they are nega-
tively affected by hypomagnetic conditions. Organisms developed magnetoreception on the 
basis of the radical pair mechanism (RPM), and therefore the GMF has become an excep-
tional source of positional information. Thanks to this ability, organisms are able to find 
most convenient habitats and rutting places not to mention migrations over huge distances.

Finally, the nature of the GMF enabled and enhanced the evolution of life on Earth. 
Apart from gravity, the GMF was the only relatively invariable aspect of the environment 
for the first organisms emerging amid dynamic changes on Earth. This notion is proved by 
the fact that magnetoreceptors or their relics are widespread among many organisms.

To conclude.

1. The GMF directly shields Earth from corpuscular radiation, i.e. the solar wind and 
cosmic rays.

2. The GMF shields Earth indirectly, by stabilising its atmosphere and the ozone layer.
3. There is a considerable body of evidence that many organisms interact with the GMF 

on the basis of nonspecific magnetoreception, which occurs in cells, tissues, organs, 
systems, as well as whole organisms.

4. Apart from gravity, the geomagnetic field is the only ubiquitous and relatively permanent 
element of the environment, thus being a great source of information for organisms.

5. Long-term changes in the GMF could shape environmental changes, and therefore influ-
ence the rate of evolution. Still, new multidisciplinary studies ought to be carried out in 
this area.
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