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ABSTRACT

The ongoing merger of the Sagittarius (Sgr) dwarf galaxy with the Milky Way is believed to strongly

affect the dynamics of the Milky Way’s disc. We present a suite of 13 N -body simulations, with 500

million to 1 billion particles, modelling the interaction between the Sagittarius dwarf galaxy (Sgr) and

the Galactic disc. To quantify the perturbation to the disc’s structure and dynamics in the simulation,

we compute the number count asymmetry and the mean vertical velocity in a solar-neighbourhood-

like volume. We find that, overall, the trends in the simulations match those seen in a simple one-
dimensional model of the interaction. We explore the effects of changing the mass model of Sgr, the

orbital kinematics of Sgr, and the mass of the Milky Way halo. We find that none of the simulations
match the observations of the vertical perturbation using Gaia Data Release 2. In the simulation that

is the most similar, we find that the final mass of Sgr far exceeds the observed mass of the Sgr remnant,

the asymmetry wavelength is too large, and the shape of the asymmetry does not match past z ≈ 0.7

kpc. We therefore conclude that our simulations support the conclusion that Sgr alone could not have

caused the observed perturbation to the solar neighbourhood.

Keywords: Galaxy: disc — Galaxy: kinematics and dynamics — Galaxy: structure — Galaxy: evolu-

tion — solar neighbourhood — Galaxy: formation

1. INTRODUCTION

The Milky Way has been the ideal location to study

galactic dynamics because our position inside the Galac-
tic Disc gives us the perfect view of stars’ motions. With
surveys like Gaia Data Release 2 (DR2; Gaia Collabo-

ration et al. 2018a) we have an unprecedented amount

of data on the dynamics of stars in the solar neighbour-

hood. In particular, there has been a burst of interest

in the out-of-equilibrium dynamics of the disc in the
solar neighbourhood (e.g., Antoja et al. 2018; Kawata

et al. 2018; Bennett & Bovy 2019; Bland-Hawthorn et al.

2019).

Oscillations in the solar neighbourhood were first dis-

covered by Widrow et al. (2012) by looking at the num-
ber count asymmetry and trends in the mean vertical

velocity. They used a simple one-dimensional N -body
simulation to show that modes of the type observed were
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in fact a natural occurrence in the vertical disc struc-

tures. After the discovery of the solar neighbourhood

oscillations, the work of Gómez et al. (2013) was one of

the first to simulate the Sgr-Milky Way interaction as a
possible explanation for the observations. Those authors

focused on the impacts of Sgr across the disc using a light
(1010.5 M⊙) and a heavy (1011 M⊙) Sgr model. They

were able to achieve a good match to the mean vertical
velocity measurements, but found that their asymmetry

wavelength was larger than perturbations by a factor

than two, a common discrepancy with Sgr simulations

(Laporte et al. 2018).

Using simulations to investigate the cause of the lo-
cal perturbation became an important tool for the field.

D’Onghia et al. (2016) looked at not only one large satel-

lite as the possible perturber, but also a collection of

large satellites moving at different velocities as predicted

by cosmological simulations. They found that a singu-

lar massive satellite would cause underdense regions to

experience coupled horizontal and vertical oscillations
of stars. The simulation with multiple large satellites
led to a wobble in the disc as well as flares in the outer
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disc and gradual heating. The idea of looking at the
effects of more than just one perturber was furthered by

Chequers et al. (2018) who looked at the effects of halo

substructure such as dark matter subhaloes on the ver-

tical profile of the disc. Their simulations showed that

the existence of subhaloes can excite pre-existing modes

present in the disc. They theorized that the oscillations
in the disc may be the result of a dynamically active disc
and not necessarily the passage of a large perturber.

One of the most widely used Sgr-Milky Way simula-

tions to date, Laporte et al. (2018) explores how the

force from the Sagittarius Dwarf Galaxy (Sgr) and the
Large Magellanic Clouds (LMC) affects the equilibrium

of the Milky Way. They look beyond just the one-

dimensional vertical perturbation and also consider the

effect as a function of radius, finding that Sgr causes

corrugation and flaring of the disc.

With Gaia DR2, observations of the perturbation im-
proved by leaps and bounds. Bennett & Bovy (2019)

were able to utilize the completeness of Gaia DR2 to
improve measurements of the number count asymme-

try and the large radial velocity sample in Gaia DR2

to improve measurements of the mean vertical veloc-

ity. Furthermore, Antoja et al. (2018) discovered the

existence of a phase-space spiral, the two-dimensional
projection of the same effect. Antoja et al. (2018) also

used a small test particle simulation to show that the
phase-space spiral could be reproduced by phase mixing
after a perturbation to the disc. The effects due to Sgr

in the Laporte et al. (2018) simulation were then further

analysed in Laporte et al. (2019) where they compared

it to the observed phase-space spiral. They found that
there is a qualitative match, but were not able to re-

produce the perturbation wavelength with their simula-
tions. Further, while they consider four mass models for
Sgr in the first paper, the second paper only focused on

one orbit for one of the lighter Sgr models.

Once again considering alternatives to Sgr as the cause

of the perturbation, Khoperskov et al. (2019) used anN -
body simulation to show that the bar buckling could re-

produce a qualitative match to the vertical phase-space
perturbation. However, while they found they were able
to relax the timing of the perturbation, the timing of the

perturbation may still require recurring buckling instead

of a one-time event to explain the perturbation.

Most recently, Bland-Hawthorn & Tepper-Garćıa

(2021) performed a high-resolution (108 particles) N -
body simulation that modelled the interaction between

an impulsive mass (Sgr was represented by a point mass)

and a cold stellar disc. They found that the resultant

perturbation from the interaction resulted in a density

wave and a bending wave that can survive for 1.5 Gyr.

They also found that to match both the current mass of

Sgr as well as the amplitude of the perturbation, they

required that the observed oscillations must have been

excited by Sgr on a previous pericentric passage ∼ 1− 2

Gyr ago. They also required that Sgr be losing mass at

a rate of 0.5-1 dex per orbit, which is fairly high (Tollet
et al. 2017). Finally, in two of their twelve considered

volumes, they were better able to reproduce the tight-

ness of the spiral in the radial velocity but again found

that the azimuthal velocity phase spiral was too loosely

wound when compared to observations. However, their

use of a point mass for Sgr meant that comparing the

final position of the point mass to the true position of

Sgr was not feasible and also ignored mass loss of Sgr as
it passed through a pericentre.

The focus of simulations thus far has been on mak-

ing qualitative comparisons to the solar neighbourhood

observations. We aim to produce simulations that can

be used to quantitatively compare the effects of Sgr to

the Gaia DR2 observations. While there exists a large

number of simulations on the interaction between a mas-

sive perturber and the Galactic disc, the varying simu-

lation methods discussed above mean it is difficult to

directly compare the properties of the solar neighbour-

hood in each. By utilising a fast GPU N -body tree-

code, we are able to overcome this and quickly run mul-
tiple simulations with 500 million to 1 billion particles

(e.g. Hunt et al. 2021). We choose the simulations to
run based on our previous investigation of Sgr–Milky-

Way interactions and whether they can reproduce the

observed phase-space structure in the solar neighbour-

hood (Bennett & Bovy 2021). In that paper, we used a

linear-perturbation-theory model to determine the im-
pact of Sgr on the kinematics of the solar neighbour-

hood. Vasiliev & Belokurov (2020) performed an in-
depth analysis of the kinematics of Sgr including esti-

mating the mass of the remnant, ∼ (4 ± 1) × 108 M⊙,

where approximately 25% comes from the stellar compo-

nent. They also investigated how the initial structure of

Sgr relates to the observed remnant today and were able

to reproduce the cigar-like shape using spherical mod-
els. The Sgr mass models used in our analysis are all
based on the models considered in Vasiliev & Belokurov

(2020).

In Section 2, we discuss the techniques we use to ini-

tialise the initial conditions for our three-dimensionalN -
body simulations. We also discuss how we choose where

to place Sgr in our Milky Way for the simulations and
we include a brief discussion about the properties of our
equilibrium simulations before placing Sgr. In Section

3, we discuss the properties of solar neighbourhood-like

volumes in each of our simulations. That Section is bro-
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Table 1. Milky Way Halo parameters for the three
equilibrium initial conditions.

M200 c200 Mh ah

(

1012 M⊙

) (

1012 M⊙

)

(kpc)

Light 0.6 8.55 0.8 26.4

Medium 1.0 10.10 1.2 27.7

Heavy 1.4 11.35 1.6 28.6

ken down into three further subsections where we look

at the effects of changing (i) the mass of Sgr, (ii) Sgr’s

orbit, and (iii) the mass of the Milky Way halo. Finally,

in Section 4 we discuss our findings, their implications,

and how to move forward.

2. NUMERICAL METHODS

To create the initial conditions for our N -body sim-

ulation, we use GALIC: Galaxy initial conditions

construction1(Yurin & Springel 2014) to set up the
Milky Way and Sgr, separately. GalIC uses the min-

imization of a merit function to solve the collisionless
Boltzmann equation by adjusting the particle velocities.
It randomly draws new velocities from an approximate

distribution function and then only keeps those that im-

prove the fit of the merit function. We then simulate the

evolution of the Milky-Way–Sgr system using Bonsai2

(Bédorf et al. 2012). In this section, we discuss all of

the ingredients of our numerical methods in detail.

2.1. Model for the Milky Way

For the purposes of our investigation, we choose to

look at three different Milky Way models. The models
are derived from the galpy potential MWPotential2014

(Bovy 2015), but with heavier halos and they match

the potentials in Bennett & Bovy (2021, hereafter

BB21): MWP14-1, MWP14-2, and MWP14-3. In

BB21, we showed that the heavier Milky Way poten-

tials were the only two that led to realistic looking

asymmetries. However, for the sake of completeness,

we also run simulations for the MWP14-1 model. All

three potential models have the same disc and bulge
as MWPotential2014, but while MWP14-1 also has

the same halo as MWPotential2014, MWP14-2 and

MWP14-3’s halos are 1.5 and 2 times heaver than the

MWPotential2014 one, respectively. Their mass and

concentration are shown in Table 1 using a Hubble con-

1 https://wwwmpa.mpa-garching.mpg.de/∼volker/galic/
2 https://github.com/treecode/Bonsai

Table 2. GalIC parameters to generate the initial conditions for the
three different Milky Way models.

Parameters MWP14-1 MWP14-2 MWP14-3

Halo concentration c (CC) 9.0139 10.4295 11.6131

Virial velocity v200 (V200; km s−1) 142.0 165.4 184.7

Spin parameter λ (LAMBDA) 0.0526 0.0468 0.0441

Disc mass fraction md (MD) 0.1002 0.0636 0.0458

Bulge mass fraction mb (MB) 0.00676 0.00428 0.00307

Disc spin fraction jd (JD) 0.1002 0.0636 0.0458

Disk scale height (DiskHeight) 0.0933 0.0933 0.0933

Bulge Size (BulgeSize) 0.0203 0.01936 0.0188

Halo shape parameter (HaloStretch) 1.0 1.0 1.0

Bulge shape parameter (BulgeStretch) 1.0 1.0 1.0

NHALO 40,000,000 40,000,000 40,000,000

NDISK 50,000,000 50,000,000 50,000,000

NBULGE 10,000,000 10,000,000 10,000,000

Halo velocity structure 0 0 0

Disk velocity structure 3 3 3

Bulge velocity structure 0 0 0

Disk dispersion R over Z ratio 〈v2

R
〉/〈v2

z
〉 1.874 1.874 1.874

Disk streaming velocity parameter k 0.985 0.985 0.985

stant of 100 km s−1 Mpc−1 to remain consistent with the

internal units of GalIC. Our initial setup of MWP14-2

contains approximately one billion particles while our
initial conditions for MWP14-1 and MWP14-3 contains
approximately 500 million particles. The number of par-

ticles in each component is approximately divided into

50% in the disc, 10% in the bulge, and the remaining

40% in the halo. For the purpose of this section, the con-

version between the Hernquist parameters and measured

observational parameters of the Milky Way and the cor-

responding GalIC parameters will be demonstrated for

MWP14-2. The method was the same for all three equi-

librium initial conditions and the final GalIC parameters

for all three Milky Ways are shown in Table 2.

When calculating the GalIC parameters, the first con-

sideration is that MWPotential2014 uses an NFW halo,

but GalIC assumes a Hernquist profile for the halo.
GalIC uses the input velocity at the virial radius, v200,

to calculate the virial radius, r200, for the initial condi-
tions. To relate the two, they assume that the density

profile of the halo may be approximated as an isother-

mal sphere. This leads to the relation (Mo et al. 1998):

r200 =
v200
10H

, (1)

where H is Hubble constant and GalIC uses a value of

H = 100 km s−1 Mpc−1. Furthermore, v200 is used to

calculate not only the total mass of the galaxy, but also
the scale radius of the halo in conjunction with the con-
centration. This means that v200 is both a property of

the entire galaxy as well as a property of the halo. To
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accommodate the contradiction in this double assign-
ment, we need to artificially increase the concentration

parameter that is only used to calculate properties of

the halo, such that ah matches the scale radius of the

halo in MWPotential2014. Now that we understand how
GalIC uses the different parameters, we can start con-

verting between NFW and Hernquist properties. We

start by using the true r200 and concentration, c, of the

NFW halo in MWPotential2014 to calculate the desired

Hernquist scale radius using

ah =
r200
c

√

2

[

ln(1 + c)− c

1 + c

]

(2)

For MWP14-2, this gives us a Hernquist scale radius

of ah = 27.68 kpc. However, the r200 of the halo is

not the same as the r200 parameter in GalIC. Therefore,

we use the same equation above along with the newly

calculated scale radius of ah = 27.68 kpc and r200 which
corresponds to the mass of the entire galaxy to calculate

the true concentration. This artificially increases the

concentration parameter passed to GalIC.

We find the disc and bulge mass fraction simply by

calculating Md(R = r200, z = r200) and Mb(r = r200)
and we divide by the total mass of all three components

at r = r200. Calculating these values for MWP14-2 gives
md = 0.0636 and mb = 0.00428.

The next parameter we calculate is the disc spin pa-

rameter, λ:

λ =
Jd
jd

(fc/2)
1/2

G1/2 M200
3/2 r2001/2

(3)

where Jd is the disc angular momentum, jd = Jd/J is

the disc’s angular momentum relative to the total angu-

lar momentum (the disc spin fraction), and

fc =
c
(

1− 1
(1+c)2 − 2 ln(1+c)

(1+c)

)

2
(

ln(1 + c)− c
(1+c)

)2 (4)

(Springel & White 1999). Assuming conservation of mo-

mentum of the material that forms the disc, we set jd
equal to the disc mass fraction md. We then find that
λ = 0.0468 for MWP14-2.

In GalIC you can set a starting point for the disc scale

height and the initial guess for the scale radius of the disc

is determined by λ, c and r200. The final value for both

the scale height and radius is ultimately determined iter-

atively using the disc momentum. The disc scale height

is given in units of disc scale length, so we use the ra-

tio of the disc scale height, b, and scale length, a, of

the Miyamoto-Nagai disc potential (Miyamoto & Nagai

1975) in MWPotential2014 to estimate this value to be

0.0933. Ultimately, GalIC settles on values of H = 3.41
kpc for the scale radius and zh = 0.318 kpc for the scale

height of the disc.

The scale radius of the bulge is given in units of the

halo scale length; the properties of MWP14-2 result in

a bulge scale length of approximately 0.01936. For both

the bulge and the halo, we choose to have a spherically

symmetric and isotropic velocity structure. The shape

parameters of the bulge and halo are therefore one and

we choose GalIC’s velocity structure zero for both of

them.

For the disc velocity structure, we choose an axisym-
metric disc, described by a distribution function of the

form f(E,Lz, I3) which requires 〈v2z〉/〈v2R〉, and the net

rotation specified (GalIC velocity structure three). Since

these parameters are not considered in MWP14-2 which

is a static potential, we use the Gaia DR2 data in the

solar neighbourhood to estimate both. For the veloc-
ity dispersion ratio, we find a value of approximately

〈v2R〉/〈v2z〉 = 1.874. This is approximately consistent
with Mackereth et al. (2019) who found a value of

σR/σz = 1.56 ± 0.10. The net rotation is given by the

disc streaming parameter, k, which is calculated using

k2 =
〈vφ〉2

〈vφ2〉 − σ2
R

(5)

Again using Gaia DR2, we find k = 0.985 in the solar
neighbourhood.

Due to computational constraints, instead of running
one initial condition with 109 particles, we ran 10 (or 5 in

the case of MWP14-1 and MWP14-3) initial conditions

with 108 particles using random seeds 1000 through

10,000. While each of the ten snapshots is in equilib-

rium, they are not necessarily in equilibrium with each

other. This is not a concern, because as we describe

in Section 2.3, we run all conditions together for 3 Gyr
before adding in Sgr. After combining the different con-

ditions, we compared the density profile of all three com-

ponents to the density profiles from MWPotential2014

and found that they were consistent at all distances out

to approximately 500 kpc.

2.2. Models for Sgr

The next step is choosing the models for the Sgr-like

satellite in our simulation. We choose to look at the

Sgr 1, Sgr 2, and Sgr 3 models from BB21 which are

the three heaviest of the five considered. These models

are derived from the Sgr parameters in Vasiliev & Be-

lokurov (2020). Though they were ruled out in BB21,
we choose the heaviest models because we wanted to

generate the largest signal possible in our N -body sim-

ulation to overcome the uncertainties that come with
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having a small number of particles in the solar neigh-
bourhood. The three Sgr mass models have halo masses

of Msgr,h = (50, 10, 5) × 109 M⊙ and stellar masses of

Msgr,∗ = (1, 0.2, 0.1) × 109 M⊙. Both components are

given as Hernquist potentials with scale radii of asgr,h =
(6.7, 3.0, 2.1) kpc and asgr,∗ = (1.45, 0.65, 0.46) kpc. The

total mass of each Sgr mass model is given by Minit =
Msgr,h + Msgr,∗. These two-component spherical mod-

els are consistent with the ones used by Vasiliev & Be-

lokurov (2020) that resulted in a match to the observed

Sgr kinematics.

Like with the Milky Way, we also use GalIC to cre-

ate the initial conditions for Sgr. By setting M200 =
Minit, GalIC also sets V200 and R200 for the entire

system. To make sure that the halo scale radius in

GalIC matches the values above, we have to choose

a concentration using Equation (2), therefore we set

csgr,h = 17.96, 25.24, 29.15. Our final choice when ini-
tializing Sgr with GalIC is the number of particles in

each of the two components. This choice is fairly ar-
bitrary, so we choose a number of particles in the Sgr
dark matter halo such that their mass approximately
matches the mass of the halo particles in our Milky Way,

mmw,h ≈ 2451M⊙. For the stellar particles in Sgr, we

choose a number of particles such that they will have
a similar mass to the particles in the Milky Way disc,

mmw,d = 133.8M⊙. So this means that the halo has
Nsgr,h ≈ (20.4, 4.08, 2.04) × 106 and the stellar compo-

nent has Nsgr,∗ ≈ (7.5, 1.5, 0.75) × 106. Once we have

generated the particles for Sgr, we have to decide where

to place them relative to the centre of the Milky Way

such that they end up near Sgr’s location today.

2.3. Simulations

The simulations are evolved using a gravitational N -

body GPU tree code integrator Bonsai (Bédorf et al.
2012). There are five parameters that need to be speci-

fied for a simulation using Bonsai. For the opening an-

gle we used a value of 0.4, which is typical, if not smaller

than other simulations in the field (Laporte et al. 2018;

Khoperskov et al. 2019). With Bonsai, you can spec-

ify the frequency with which you want to rebuild the
tree that computes the forces, we update the tree at
each step. Bonsai requires a constant integration time

step, for all simulations discussed in this paper we use
9.778145 kyr. For the simulations where we vary the
mass of Sgr, the output time step was every 4000 steps
(approximately every 39 Myr), but for the kinematics of

Sgr simulations as well as varying the MW halo mass,
we chose to output snapshots every 1000 steps (approx-
imately every 9.8 Myr). Finally, we use a softening pa-

rameter of 50 pc, which is on the order typically used for

these types of simulations (Laporte et al. 2018; Vasiliev
& Belokurov 2020). The entire suite of simulations took

approximately 5 GPU years to run on Nvidia Telsa 32

GB V100 GPUs.

We ran the initial conditions of the Milky Way for 3

Gyr or more before adding Sgr to ensure the disc was

in equilibrium as well as to get a better measure of the
intrinsic uncertainty in the perturbation to the distribu-
tion function. Ideally, the perturbation function would
be completely symmetric for our ‘equilibrium’ case, but

due to the discrete nature of anybody simulations and

intrinsic Poisson error, that is not the case. So when we

measure the asymmetry in the perturbed simulation we

have a baseline to compare against.

2.4. Validation

Before looking at the perturbed Milky Way, we first

look at the equilibrium case to see how well we can trust

any asymmetry seen in our perturbed simulation. All of

our initial conditions are integrated on their own for

3-5 Gyr to ensure that they have reached an equilib-

rium. This allows us to focus on the effects of Sgr as
the dominant cause of the perturbation as opposed to
being muddied by other dynamical events such as the
bar formation.

The first thing we check is that the properties of our

disc are reasonable compared to that of the Milky Way.
We examined eight solar neighbourhood-like volumes

around the equilibrium Milky Way simulation spaced
π/4 radians apart and starting at φ = 0. They were all

at a radius of 8.1 kpc from the centre of mass of the disc
and bulge. The true mid-plane density has been mea-

sured to be approximately ρ0 = 0.1 (Holmberg & Flynn

2000; Widmark & Monari 2019). The average mid-plane
density of MWP14-1 is (0.062 ± 0.002) M⊙ pc−3 which

is significantly lower than the mid-plane density in the
MilkyWay, which we will have to account for in our anal-
ysis. For MWP14-2, we found an average mid-plane den-

sity of (0.116±0.006)M⊙ pc−3. For MWP14-3, the aver-

age mid-plane density fell at (0.12±0.01)M⊙ pc−3. The

average mid-plane density is high compared to true mid-
plane density of the Milky Way. However, the density

is also affected by the introduction of Sgr, and therefore
an exact match at this stage is not required. Next, we
looked at the velocity dispersion of the simulated Milky

Way discs and found that their mean velocity disper-

sion at the solar neighbourhood was 22.4± 0.12 km s−1,

22.8 ± 0.3 km s−1, and 22.3 ± 0.4 km s−1 for MWP14-

1, MWP14-2, and MWP14-3 respectively. This is also

similar to the true values of the Milky Way, which is

approximately 20.5 km s−1 (Gaia Collaboration et al.

2018b; Bennett & Bovy 2021).
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0.0 0.5 1.0 1.5 2.0

z (kpc)

−0.10

−0.05

0.00

0.05

0.10
〈A

〉
MWP14− 1

MWP14− 2

MWP14− 3

Figure 1. Mean asymmetry A at eight different solar neigh-
bourhood like areas in the simulation which are at a radius
of 8.1 kpc and spaced every 45 degrees around the circle
starting at φ = 0. The three lines represent the three differ-
ent equilibrium simulations done for MWP14-1 (blue solid),
MWP14-2 (orange dashed), and MWP14-3 (green dotted).
This asymmetry for the unperturbed disc provides a base-
line for comparison when considering the significance of the
signal in our perturbed simulations.

Second, we check that the Milky Way reaches an equi-

librium before we add the satellite. To do this, we check

the rotation curve of the galaxy at several different snap-

shots in the simulation. At first, the potential is smooth

and well-defined. We looked at the Toomre parameter

for MWP14-1, MWP14-2, and MWP14-3 of approxi-

mately Q = 1.3, 1.5, and 1.8 respectively (Toomre 1964).
From these values, we would expect that they are in-

creasingly more stable, but could still be susceptible to

bar and spiral formation. As expected, after some time,

all three simulations form a bar and we need to wait un-

til the disc has reached equilibrium again before adding

our satellite.

Finally, we check the density asymmetry defined in
Equation (8) below as a function of height at our last

time at several different Solar Neighbourhood-like loca-

tions throughout the Milky Way. We measure the asym-

metry at the previously defined eight different equally

spaced locations in the Milky Way. Figure 1 shows the

mean asymmetry as well as the error in the mean us-

ing those eight locations spaced equidistant around the

circle at R = 8.1 kpc. For all three Milky Ways, the

uncertainty as well as the asymmetry appear to grow

at approximately equal rates. The figure clearly shows

that within 1.3 kpc of the mid-plane, the asymmetry for

MWP14-2 and MWP14-3 is within uncertainty of zero

for both equilibrium Milky Ways. However, further out
we see that the asymmetry grows faster than the un-
certainty. The asymmetry of MWP14-1 actually stays

within uncertainty of zero except for one small devia-

tion at ∼ 0.85 kpc at all heights. When looking at our

perturbed simulations, it is important to keep in mind

the heights at which we can trust our results.

2.5. Placing Sgr

To figure out where to place the satellite in our sim-

ulation such that it most resembles the Sgr satellite, we

have to integrate Sgr’s present-day position backward

in the potential of our equilibrium simulation. This

is not straightforward given that the equilibrium sim-

ulation forms a bar and spiral arms after it has been

evolved for 3-5 Gyr. There are several different meth-

ods for calculating the potential for the simulations. The

first is the exact potential calculation that involves di-
rect summation over each particle. However, this can
be computationally expensive and not feasible. For that
reason, we decide to approximate the potential using

the self-consistent field (SCF) basis function expansion

described in Hernquist & Ostriker (1992). We use the
galpy Python package3 (Bovy 2015) to calculate the

SCF expansion coefficients and initialise the potential

using the expansion orders of Nh = Lh = 5 for the halo,

Nd = Ld = 15 for the disc, and Nb = Nb = 3 for the

bulge. The order of the expansion reflects the complex-

ity of that component. The SCF expansion also requires

that we define scale radii for each component. We use

the Hernquist radius of the halo, the disk height, and the

bulge size defined in Section 2.1 for the halo, disc and

bulge respectively. Since the coefficients are additive,

we calculate the coefficient on subsets of the particles

for each component before adding them together to cal-

culate the approximate potential expansion.

To ensure that the approximated potential behaves
similarly to the actual potential of the particles, we

test several different properties. The first thing we

check is that the rotation curve calculated using each

particle’s position and mass using direct summation

matches the rotation curve of our SCF expansion. We

calculate the direct-summation result using galpy’s
SnapshotRZPotential that creates an axisymmetrized

version of the N -body potential by averaging the direct-
summation forces at four azimuths spaced 90◦ apart.

Figure 2 shows the rotation for both cases as well as the

rotation curve of the two halos. We do find that the two

disagree within ∼ 8 kpc, but this is due to the fact that

the SCF expansion relies on spherical harmonics as ba-
sis functions and it is therefore difficult to reproduce a

disc-like structure. In all of our simulations, Sgr does not
come within 10 kpc of the centre of the Milky Way, so

3 http://github.com/jobovy/galpy
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Table 3. Position of Sagittarius at t = now Compared to Each of the Simulations.

t Minit Mnow R vR vT z vz φ tperi rperi

(Myr) (108 M⊙) (108 M⊙) (kpc) (km s−1) (km s−1) (kpc) (km s−1) (rad) (Myr) (kpc)

S
g
r
M

a
s
s

M
o
d
e
ls

Sgr − − ∼ 4± 1 16.7 227.2 65.8 -6.26 202.4 3.00 − −

Heavy 812 510 32 10.9 258.2 68.2 -4.28 187.9 2.95 62 13.2

Medium 870 102 15 10.2 273.4 96.9 -8.99 162.0 2.87 55 12.3

Light 909 51 10 13.6 248.8 76.6 -7.59 186.3 2.95 55 8.4

V
e
lo
c
it
y

M
o
d
e
ls

Sgr − − ∼ 4± 1 13.8 217.5 34.1 -5.52 176.7 2.99 − −

Fastest 567 102 10 10.6 220.0 28.3 -5.64 136.8 3.00 34 8.8

Sgr − − ∼ 4± 1 15.5 226.3 52.9 -5.96 191.2 2.99 − −

Fast 743 102 13 13.2 217.3 37.6 -5.17 165.7 3.01 38 10.5

Sgr − − ∼ 4± 1 17.8 225.8 78.8 -6.56 214.4 3.00 − −

Slow 1066 102 18 15.5 224.2 63.5 -5.83 194.5 3.00 36 13.3

Sgr − − ∼ 4± 1 19.8 231.2 100.6 -7.06 232.2 3.01 − −

Slowest 1584 102 22 17.0 233.8 89.5 -6.69 215.8 2.98 32 15.6

M
W

M
a
s
s
M

o
d
e
ls

M
W

P
1
4
-3

M
W

P
1
4
-1

Sgr − − ∼ 4± 1 13.8 217.5 34.1 -5.52 176.7 2.99 − −

Fastest 1105 102 16 13.5 217.9 33.5 -4.47 176.5 3.00 49 10.3

Sgr − − ∼ 4± 1 16.8 222.2 66.9 -6.29 205.0 3.00 − −

Median 2289 102 23 14.9 234.1 70.6 -5.92 198.83 2.98 42 13.3

Sgr − − ∼ 4± 1 19.8 231.2 100.6 -7.06 232.2 3.01 − −

Slowest 3707 102 40 19.7 225.6 97.9 -6.14 232.5 3.01 43 17.8

Sgr − − ∼ 4± 1 13.7 221.1 33.2 -5.50 174.8 2.99 − −

Fastest 489 102 9 13.4 218.8 32.5 -5.23 164.7 2.97 55 8.8

Sgr − − ∼ 4± 1 16.9 220.3 68.1 -6.33 206.7 3.00 − −

Median 665 102 15 17.0 201.4 52.4 -5.32 186.7 3.02 50 12.9

Sgr − − ∼ 4± 1 19.7 232.9 100.0 -7.04 231.2 3.00 − −

Slowest 988 102 20 18.2 246.4 103.6 -7.46 223.6 2.98 48 16.2

Note—There is variation in the true position of Sgr because we consider orbits drawn from the uncertainties in Sgr’s current
position to obtain the different kinematics of Sgr. We also list the time (tperi) and closest Galactocentric approach (rperi) of
Sgr’s last pericentric passage for each simulation.

the halo will be the component that most affects the dy-

namical friction and orbit of Sgr. It is therefore sufficient

that the SCF approximation of the halo matches that of

the exact simulation particles for the halo. Though not

pictured, we also check the density profile of each com-

ponent compared to the axisymmetrized density calcu-

lated using SnapshotRZ and found that much like the
rotation curve, the two were consistent outside ∼ 8 kpc.

We also ran a quick 100 million particle simulation
such that we could calculate the approximate the mass of

Sgr as a function of time. Using this as a model for mass

loss, we were better able to predict the strength of the

dynamical friction throughout the orbit. For both the

density function required to calculate dynamical friction

and the orbiting potential, we used our SCF potential

approximation. To calculate the dynamical friction we

use the ChandrasekharDynamicalFrictionForce from

galpy that calculates the Chandrasekhar dynamical

friction on a satellite given the mass. The force from

dynamical friction on the satellite is calculated using

F (x, v) = −2π [GM ] [Gρ(x)] ln
(

1 + Λ2
)

×
[

erf(X)− 2X√
π
exp

(

−X2
)

]

(6)

where G is the gravitational constant, M is the mass of

the satellite, x is the position of the satellite, v is the
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Figure 2. Rotation curve for the full three-component
galpy snapshot potential (black, solid) as well as the SCF
basis expansion potential (blue, dashed). Also plotted is the
rotation curve for just the halo component of the snapshot
potential (black, dotted), as well as that of the SCF potential
(blue, dash-dotted). While the three-component potential is
quite different from the other within 8 kpc, they agree well
further out and are fully consistent at all length scales for
the halo.

velocity of the satellite, and ρ is the background density

of the Milky Way. The two calculated parameters are

given by X = |v|/
√
2σr(r) and

Λ =
r/γ

max(rhm, GM/|v|2) , (7)

where rhm is the half mass radius of the Sgr mass model
and γ = max(|d ln ρ/d ln r|, 1). We initialise the dynam-

ical friction object using the half-mass radius and total
mass of the combined dark matter and stellar compo-
nent of each Sgr model. For the potential in which the
satellite is moving we use the SCF potential calculated

for the equilibrium initial condition. Next, as we in-

tegrate the satellite backward, we update the mass of

Sgr after each of 1000 equally spaced integrals in the

total integration time using the results of the 100 mil-

lion particle simulation. This is only a rough estimate of

mass loss for two reasons. First, the mass loss is going

to change between simulations as the orbit and Milky

Way density changes, so using the mass loss from our
test simulation will not be exactly accurate. Second,
we do not change the half mass radius for each interval,

which means the Sgr will be approximated as too dif-

fuse. However, we find that despite these assumptions,

our placement of Sgr results in a fairly accurate final

position in our simulations.

Our initial conditions for Sgr are taken from the anal-
ysis of Sgr’s orbit considered in BB21. Within this ex-

ploration of the orbit, they initialised over 10,000 orbits

where the initial conditions are drawn from Gaussian

distributions given the errors in Sgr’s position and ve-
locity. The position was given by R = 26 ± 2 kpc (Mc-

Connachie 2012) and {α, δ} = {283.8313,−30.5453} deg

(Gaia Collaboration et al. 2018c). The velocities and as-

sociated uncertainties were vlos = 140 ± 2 km s−1 (Mc-

Connachie 2012) and {µ∗
α, µδ} = {−2.692,−1.359} ±

0.001mas yr−1 (Gaia Collaboration et al. 2018c). We
chose Xsun = 8.1 kpc for consistency with galpy that

we use for our orbit integration.

In each section of our analysis, we have a more thor-

ough discussion of how we choose the final position of

Sgr in each simulation because it depends on the Milky

Way potential, the Sgr model, and the Sgr orbital kine-

matics. Once we know where we want Sgr to end, we
integrate the orbit back two apocentres. We do this
for several reasons. First, we go back to an apocen-

tre because the modeling assumption that the disc is in

equilibrium before the interaction is best satisfied when

Sgr is at an apocentre so it is perturbing the disc as

little as possible to start. Second, we go back two apoc-

entres because we want to go back far enough to get

the secondary effects from the passage, but longer than

two apocentres, and the backward orbit integration be-

comes more uncertain. Furthermore, in BB21 both the

model and one-dimensional self-gravitatingN -body sim-

ulations showed that the 2 apocentres was sufficient to

capture the overall trend in the asymmetry and mean
vertical velocity.

Once we have the position and velocity of Sgr’s orbit

two apocentres ago, we use it to place our Sgr particles

in our simulation and truncate all particles at 500 kpc.

While we use this method to try and estimate where the

satellite will end up later in the simulation, this does not

guarantee it will finish where we expect.

2.6. Sgr properties throughout the simulation

Throughout the simulation, we track the Sagittarius

particles to obtain the orbit and effective mass of the

satellite. This is important if we want to compare the

asymmetry in the simulation to the model developed in

BB21. To do this, we use clustertools4 (Webb 2020),
a Python package developed to retrieve the proper-

ties of clusters in simulations. We start by initializing

a cluster using the positions, velocities, and masses of

both the stellar and dark matter particles in our satel-

lite. We can then use clustertools to find the central

density of our cluster, the mass within the tidal radius,

and the half-mass radius.

4 https://github.com/webbjj/clustertools
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Figure 3. Sgr orbits for the different perturbed simulations. The three different panels show the three different Milky Way
potentials. The lines on each panel show the orbits for the different speeds of Sgr: Fastest (red, solid), Fast (orange, dashed),
Median (green, dotted), Slow (blue, dash-dotted), and Slowest (purple, dash-dot-dotted). The offset in the different orbits arises
from the fact that the different speeds of orbits arise from the uncertainty in Sgr’s current position.

When setting up our simulation, we did our best to

place the satellite such that it would end up around

Sgr’s current position. However, we could not predict

its path exactly, so once the simulation had finished,

we chose the snapshot that most closely resembled the

location and velocity of Sgr. Figure 3 shows the orbit

of Sgr extracted from each of our simulations and pro-

vides an approximate timescale for each. Table 3 shows

the position of Sgr drawn from the distributions in the

position and velocity arising from the errors in the cur-

rent phase-space parameters. We also include the closest
position of our satellite in the different simulation sce-
narios. For the three different Sgr mass simulations, the
benchmark position does not change. However, by def-

inition, when we look at how the uncertainty in Sgr’s

current day position affects the orbit and therefore the

perturbation, the benchmark changes. In some cases,

we see the mass increase from one time step to another.
This is because we define the mass as the total mass
from Sgr particles within the tidal radius at each time
step. Since Sgr has just passed through pericentre, some

of the stream particles catch up to Sgr from one time

step to another therefore artificially increasing the ob-

served mass of Sgr. Finally, we also give the time (tperi)

and Galactocentric distance (rperi) of Sgr’s last pericen-
tric passage for each simulation in Table 3. As is clear

from Figure 3, the time of the last pericentric passage

is ≈ 50Myr with only a few tens of Myr variation be-

tween different simulations—much less than the dynam-

ical timescale of Sgr’s orbit.

3. INVESTIGATING THE SOLAR

NEIGHBOURHOOD

In this section, we investigate how both the mass of

Sgr and its kinematic properties affect the vertical dy-

namics in the solar neighbourhood. As in BB21, we

focus on the effect on the number density n(z), char-

acterized through the asymmetry A, and on the mean
vertical velocity. The asymmetry is defined as

A(z) =
n(z)− n(−z)

n(z) + n(−z)
, (8)

where z is the vertical position with respect to the mid-
plane. The density, which is used to calculate the asym-

metry, and the mean vertical velocity are the zeroth and

first velocity moments of disturbed phase-space spirals.

For this reason, we will also look at the phase-space spi-

ral.
Before placing Sgr, the solar neighbourhood could ex-

ist at any φ value in the simulation. However, by placing
Sgr, the symmetry is broken and the solar neighbour-

hood is now at R = 8.1 kpc and φ = 0 when t = now.

Table 3 shows the final positions of Sgr in our simu-

lations alongside the true position of Sgr in the Milky

Way. For each simulation we find the two nearest snap-

shots because our orbits in the SCF potential, which
overlooks rotation and reflex motion of the Milky Way,
are not able to exactly predict the orbit and therefore
none of the snapshots are exactly correct. Once we have

the closest snapshots, we choose the snapshot that has

the closest z position and vz velocity to the true Sgr
position using the following equation:

∆ =

√

(

zsim − ztrue
8 kpc

)2

+

(

vz,sim − vz,true
220 km s−1

)2

(9)

where the subscript ‘sim’ denotes the simulation’s posi-
tion and velocity and ‘true’ denotes the position where

we placed Sgr when integrating backward. We also
looked at the asymmetry and mean vertical velocity for
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both snapshots. We found that they were very similar
considering the uncertainties, and therefore it was not

worth plotting both.

To select the solar neighbourhood, we adjust for the

centre of mass and angular momentum of the disc,
such that the disc is centered on our coordinates and

is aligned with the plane z = 0. For each solar
neighbourhood-like volume, we chose a cylinder centered

at {X,Y, Z} = {8.1, 0, 0} kpc with a radius of 1 kpc.

Throughout this section, we compare our simulations to

the perturbation measurements from Bennett & Bovy

(2019) who use Gaia DR2 data within a cylinder ra-
dius of 250 pc. To ensure consistency, we did verify that

the asymmetry and the mean vertical velocity measure-

ments of the perturbation were consistent when compar-

ing volumes of 250 pc and 1 kpc in our simulation. We

chose to use 1 kpc however, because of the much larger

number of particles and subsequent decrease in the un-

certainty in our measurements. This allows us to choose

the location similar to the solar neighbourhood in dis-
tance from the centre of the disc. To properly account
for any warping for of the disc, once we have selected the
volume of interest in our simulation, we adjust for the

angular momentum of the volume. To do this, we select

a volume centred on the same location and with a radius

twice as large. Adjusting for the angular momentum of

this larger volume means that when we reduce the ra-
dius of the cylinder to the radius specified, we capture
all of the particles that are shifted into our volume by

the adjustments that would have been missed if we had

only looked at the specified volume.

Another test of our models is how well the final rem-
nant mass compares to the current estimates of Sgr’s

thus far. Law & Majewski (2010) used the velocity dis-
persion of the stellar tidal stream to estimate a cur-

rently bound mass of 2.5+1.3
−1.0 × 108 M⊙. In Frinch-

aboy et al. (2012), they found a half-mass radius of Sgr

of rhm = 1.2 × 108 M⊙ that translates to a mass of

∼ 4 × 108 M⊙ within 5 kpc. Finally and most recently
Vasiliev & Belokurov (2020) concluded that Sgr has a

total mass (including dark matter) of (4±1)×108] M⊙.
Though these are all estimates of the true remnant mass

and there are not yet any direct measurements, they are

all of a similar range.

Finally, we use the model developed in BB21 as a tool

to interpret the results of our simulations. In BB21,

the model was thoroughly tested against self-gravitating
one-dimensional simulations. While fitting the model to
the results of our simulations will be left to future work,
we find that it is useful for understanding the trends

seen in the different simulations.
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Figure 4. Top: Vertical density of solar neighbourhood-
like sections of the simulation in cylinders with a radius of
1 kpc at R = 8.1 kpc and φ = 0 for three different Sgr
mass models. From heaviest to lightest Sgr mass model,
the Sgr models in each simulation are Heavy (blue solid),
Medium (orange dashed), and Light (green dotted). Middle:

Vertical number count asymmetry for the same volumes and
simulation as the top panel. Only z > 0 is plotted as the
asymmetry is antisymmetric by definition. The black line
shows the Gaia asymmetry from Bennett & Bovy (2019).
Bottom: Mean vertical velocity for the same volumes and
simulations. The mid-plane densities are all near the true
value of the Milky Way mid-plane density (0.1M⊙ pc−3).
None of the asymmetries are consistent with the Gaia data
in shape or in amplitude. The mean vertical velocities do
not achieve any true signal within the range of the data to
determine a definitive match or mismatch.



Sgr–Milky-Way-Disc Interaction 11

−50

−25

0

25

50

〈v
z〉
(k
p
c)

Heavy Medium Light

−50

−25

0

25

50

〈v
z〉
(k
p
c)

−1 0 1

z (kpc)

−50

−25

0

25

50

〈v
z〉
(k
p
c)

−1 0 1

z (kpc)
−1 0 1

z (kpc)

−0.2

−0.1

0.0

0.1

0.2

∆
ρ

−20

0

20

v R
(k
m
s−

1
)

−20

−10

0

10

20

v φ
−
v φ

(k
m
s−

1
)

Figure 5. Phase-space density for three simulations with
varying Sgr mass models from heaviest on the left to lightest
on the right. The volume considered is a cylinder centered
at R = 8.1 kpc with a radius of rcyl = 1 kpc. The top row
shows the spiral coloured by ∆ρ, the middle row is coloured
by the radial velocity, and the bottom row is coloured by
the normalized azimuthal velocity. The phase-space spiral is
more loosely wound than what is seen in the Gaia DR2 data.

3.1. Changing Sgr mass

We start by looking at the effect of changing Sgr’s

mass on the vertical perturbations to the disc. While

this might seem like a simple scaling problem at first,

changing Sgr’s mass will also affect the dynamical fric-

tion and therefore the orbit of Sgr, complicating mat-

ters. In our simulations, we choose Sgr mass models Sgr

1, Sgr 2, and Sgr 3 from BB21 as described in Section

2.2, referred to as Heavy, Medium, and Light models,

respectively, throughout the rest of the paper. These
satellites orbit in MWP14-2 from BB21 as described in
Section 2.1. We do not investigate the other two models

discussed in BB21, Sgr 4 and Sgr 5, as the amplitude

from Sgr 3 is already too small to match the observed

perturbation, so a smaller Sgr model certainly would not

reproduce the perturbation either. As previously dis-

cussed, we look at a volume of a cylinder with a radius

of 1 kpc in each of the simulations. In the Heavy simu-

lation there are 1 858 959 particles, the Medium simula-

tion has 2 310 317 particles and the Light simulation has

1 632 302 particles.

We start by looking at the density profile of the disc,

the asymmetry and the mean vertical velocity as a func-

tion of height above and below the disc. Figure 4 shows
the density in the top panel. While the Heavy and

Light simulation have similar mid-plane densities, the
mid-plane density of the Medium simulation is quite a
bit larger. This larger mid-plane density is caused by

differences in the location of the spiral structure that

develops in our equilibrium simulations and that is ex-

acerbated by the influence of Sgr. The larger mid-plane

density of the disc means that the effective mass of the

disc at the solar neighbourhood is larger. With a larger

mass, the disc is more difficult to perturb and we would

therefore expect a smaller relative amplitude in the per-

turbation compared to the other two simulations (as-

suming all other things are equivalent which is not the

case). The effects of the mid-plane density on the asym-

metry was investigated in BB21, which confirmed that
a larger mid-plane led to a smaller response of the disc.

The middle panel of Figure 4 shows the asymmetry

for each of the Sgr models in our simulation at the so-

lar neighbourhood. It is clear that the Heavy Sgr mass

model resulted in the largest perturbation amplitude.

However, we find that the amplitudes of the Medium

and Light Sgr mass models are similar. This is unex-
pected as a larger mass means a larger force and should
therefore lead to a larger perturbation. It is likely that

this discrepancy is explained by the larger mid-plane

density of the disc in the Medium simulation. In terms

of the period of the oscillation, we see that the wave-

length of the asymmetry decreases as we decrease the

mass of Sgr, though this is difficult to confirm from only
the three simulations. Since the change in the mid-plane
density affects the mass of the disc, it will also result in

a change to the vertical frequency of the disc, and could

therefore affect the asymmetry wavelength. Finally, the

black lines in Figure 4 show the the measured asymme-

try from Gaia DR2 taken from Bennett & Bovy (2019).

Clearly, none of the simulations match the shape, wave-
length, or amplitude of the data, especially at z ∼ 0.4

kpc. While the discrepancy in the amplitude and pos-

sibly even the wavelength, can be explained by changes

in the mid-plane density, the shape of the asymmetry

cannot be as easily fine-tuned to create a match and it

is unlikely that changes to the disc would affect the per-
turbation to the degree it needs to be altered to force
this match.

The last panel in Figure 4 shows the mean vertical ve-

locity as a function of height in the three different simu-

lations. All three models appear to display a breathing

mode near the mid-plane of the disc, particularly the

Heavy and Light models. Like the asymmetry, the am-
plitude of the perturbation to the mean vertical velocity
in the Medium simulation is likely suppressed by the

higher mid-plane density. Unfortunately, the mean ver-

tical velocity measurement form Gaia DR2 only goes
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out to ±1 kpc and at that distance the amplitudes of
the simulation measurements are quite small. However,

while the Medium model cannot be ruled out using the

mean vertical velocity, the Heavy model is inconsistent

with the data at all heights, and the Light model does a

poor job of matching the Gaia data at negative heights.

Looking at both the asymmetry and the mean vertical

velocity leads us to conclude that it is unlikely any of

these three Sgr models could have led to the observed

oscillation in the Milky Way.

The asymmetry and mean vertical velocity are both

derived from the phase-space density. Figure 5 shows
the phase-space spiral for the three simulations coloured

by the normalized density change, ∆ρ, the radial veloc-

ity, and the normalized median subtracted azimuthal

velocity. Looking first at the density phase-space spiral,

comparing the different simulations, it is difficult to un-

cover trends in the tightness of the spiral. However, it

is evident that the Heavy simulation has a larger per-

turbation than the other two, especially on the edges
of the spiral. Comparing the simulations to observa-
tions, we see that the spirals in the simulation are much
less tightly wound than the Gaia DR2 data (Laporte

et al. 2019). By 1 kpc, the spiral in Gaia DR2 has

wound around 2-3 times, whereas our simulation has
wound only once. Next, we look at the phase-space

spiral coloured by the radial velocity. It is very evi-
dent that as we decrease the mass of Sgr, the absolute
amplitude of the radial velocity decreases. This is an

interesting trend, as it does not appear to have been af-

fected by the different mid-plane densities like our other

measurements. It also appears that the spiral becomes

more tightly wound as we decrease the mass of Sgr.

Finally, when comparing the different phase-space vol-
umes coloured by the normalized azimuthal velocity, we
see very distinctly that the spiral becomes more tightly

wound as we decrease the Sgr mass.

After looking at how changing Sgr mass affects the

perturbation to the solar neighbourhood, it is safe to
conclude that the median velocity orbit for any of the

models will not result in a match to the Gaia DR2 data.
Our next step is to investigate whether or not changing

the kinematics of Sgr will help achieve a match.

3.2. Changing Sgr kinematics

Uncertainty in Sgr’s current position and velocity, as

well as uncertainty in some properties of the Milky Way

such as the mass of the halo, leads to fairly large uncer-

tainty in the orbit of Sgr. One method of parameterizing
the different possible orbits of Sgr is the speed at which
Sgr was travelling when it passed through the mid-plane

of the disc, vz,through, and how long ago that occurred,
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Figure 6. Top: Stellar density as a function of height in
a solar neighbourhood-like location. The volume considered
is vertical cylinder with a radius of 1 kpc at a position of
R = 8.1 kpc and φ = 0. The four coloured line indicate the
four different Sgr orbit models: Fastest (red solid), Fast (or-
ange dash), Slow (green dot) and Slowest (blue dash-dot).
Middle: Vertical number count asymmetry for four different
Sgr velocity simulations. Only z > 0 is plotted as the asym-
metry is antisymmetric by definition. The black line shows
the Gaia asymmetry from Bennett & Bovy (2019). Bottom:

Mean vertical velocity in the solar-neighbourhood-like vol-
ume. The uncertainties in the simulation outside |z| < 1
were larger than the signal. Since we only have the Gaia

data within the same heights, we choose to omit the simula-
tion values outside that area as well. The mid-plane densities
vary between ((0.08− 0.13)M⊙ pc−3), which spans the true
value of the Milky Way mid-plane density. None of the asym-
metries or the mean vertical velocities match the Gaia DR2
observations.
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Figure 7. Phase-space spiral for five different Sgr orbits, parameterized by the speed at which Sgr passed through the disc
most recently from Fastest on the left to Slowest on the right. The different rows correspond to the normalized change in density
(top), the radial velocity (middle), and the normalized azimuthal velocity (bottom).

tthrough. These two parameters are highly correlated for

the current uncertainties in Sgr’s present phase-space

position and in the Galactic potential, so looking at dif-

ferent velocities of Sgr corresponds to also looking at

different times since passing through the disc. For our

investigation of the kinematics of Sgr, we chose to use

the Medium mass model of Sgr, because the asymmetry
from the Heavy simulation had an amplitude that ex-
ceeded observations and the amplitude from the Light
model was very small. It is worth noting that in our

investigation into the effects of the mass of Sgr, even

the lightest model finished with a mass that was much

larger than the estimated mass of the Sgr remnant today.

Therefore, by choosing the Medium Sgr mass model, in
the cases where we find that the amplitudes of the asym-
metry is still not large enough, we are also able to rule

out the Light Sgr mass model as suggested by Section

3.1.

BB21 looked at Sgr’s orbit as a function of the uncer-
tainties in its current position by sampling 10,010 initial

conditions from the uncertainty distributions in the cur-
rent positions and velocities of Sgr (Gaia Collaboration

et al. 2018c). Using these orbits, we calculated the most

recent velocity through the mid-plane and the time since

passing through the mid-plane for set of initial condi-

tions. For the purpose of this paper, we bin the orbits by

their velocity through the mid-plane into nine bins and

run simulations for the first (fastest), third (fast), fifth

(median), seventh (slow), and ninth (slowest) bin. This

allows us to cover a the entire range of Sgr velocities with

our simulations. From fastest to slowest, the numbers

of particles in each solar neighbourhood was: 2 239 746,

1 662 069, 2 310 317, 2 360 833, and 1 582 787. The most

recent velocity through the mid-plane and the time since
passing through the mid-plane are very strongly corre-
lated with the time and Galactocentric distance of Sgr

last pericentric passage given in Table 3.

Figure 6 shows the vertical density distribution, verti-

cal number count asymmetry and mean vertical velocity

for our four different Sgr velocity simulations. In BB21

as well as Section 3.1, we found that changing the mid-
plane density did not affect the shape of the asymmetry,

but it did affect the amplitude as well as the perturba-

tion wavelength. For this reason, when looking at trends

in our simulations, we will focus on comparing the Fast

and Slowest simulations, and the Median and Slow sim-

ulations.
The second panel of Figure 6 shows the asymmetry

for the four different velocity simulations. The Fastest

simulation has an amplitude much larger than the four

other simulations and does not appear to follow any clear

trends when looking at the asymmetry alone. When
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Figure 8. Top: Number count asymmetry of the three different Milky Way halo simulations for three different kinematics of
Sgr from Fastest on the left to Slowest on the right. The three different Milky Way halos include the lightest MWP14-1 (blue
solid), the medium halo MWP14-2 (orange dashed), and the heaviest halo MWP14-3 (green dotted). For MWP14-3, we have
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the asymmetries. Bottom: Mean vertical velocity for each grouping of Sgr kinematics and Milky Way halo mass. To match the
data, we limit the calculations to |z| < 1 kpc. For both, the observed Gaia DR2 observations are plotted in black. The closest
match to observations is the median Sgr orbit for MWP14-3, though it is still far from a perfect match.

comparing the Median and Slow simulation, there is no

discernible difference in the amplitude. Looking at the
asymmetry wavelength, the Median Sgr velocity simu-
lation has a larger wavelength with a peak at z ∼ 1 kpc

while the Slow simulation has peaks at z ∼ 0.3, 1.2, 1.8

kpc. Finally, we compare the Fast and Slowest Sgr
simulations. We see that both the amplitude and the
asymmetry wavelength of the Fast simulation is larger

than in the Slowest simulation. The Fast simulation has

peaks at z ∼ 0.2, 1.1 kpc while the Slowest simulation

has peaks at z ∼ 0.4, 1.1, 1.6. This agrees with the trend

seen in the Median and Slow simulation. This suggests

that as Sgr passes through the disc more quickly, the

wavelength of the perturbation increases. This supports

the trends seen in BB21, where both the amplitude and

wavelength decrease as the speed of Sgr decreases. The

most prominent feature of the asymmetry of the ob-

served asymmetry is the dip at z ∼ 0.4 that has a fairly

large amplitude. None of our simulations match the po-

sition of the dip. The Fast simulation is the closest with

a dip at z ∼ 0.6 kpc, but the amplitude is half that of

the observed dip and yet from Table 3, we see that the

final mass of the simulated Sgr is still ∼ 3 − 5 times

heavier than the current estimates of the Sgr remnant,

so if we were to increase the mass of Sgr to match the

amplitude, we would be greatly overestimating the mass

of Sgr.

It is also important to consider how the mean vertical

velocity in the asymmetry compares with the true sig-

nal in Gaia DR2. In the data, Bennett & Bovy (2019)

found a bending mode in the solar neighbourhood within

|z| < 1. This was later confirmed by Carrillo et al.

(2019) who found a bending mode within |z| < 1 and

a breathing mode further out. Both the Fast and Slow
simulation show strong breathing modes that are incon-
sistent with the data. The Slowest simulation has no no-

table breathing or bending signal within the uncertainty

in the points. The Fastest and Median simulation both

have a small bending signal, but the amplitude is far off

from the true amplitude from Gaia and the asymmetry

associated with both the Fastest and Median simulations
is far from the observed asymmetry.

Finally, we look at the phase-space spiral of the five
different simulations. Figure 7 shows the phase-space

spiral for all five simulations. We include the phase space

coloured by the normalized change in density, the radial

velocity, and the normalized azimuthal velocity. As we

look from the Fastest simulation to the Slowest, espe-

cially once coloured by the normalized azimuthal veloc-

ity, we see spiral becomes more tightly wound. This sup-

ports the trend seen in our asymmetry where the asym-

metry wavelength decreases as Sgr slows down. Though

harder to see in the normalized density, in both the

radial velocity and normalized azimuthal velocity, we
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Figure 9. Phase-space spiral for the MWP14-1 simulations,
which is the initial condition with the lightest of the three
Milky Way halos. The different columns represent three dif-
ferent speeds of Sgr as it passed through the mid-plane most
recently from Fastest on the left to Slowest on the right. The
rows represent the different ways of colouring phase space:
the normalized change in the density (top), the radial ve-
locity (middle), and the normalized azimuthal velocity (bot-
tom).

see the absolute amplitude of the of the perturbation

approximately decrease as Sgr passes through the disc

more slowly. Much like in the simulations where Sgr’s

mass is changed, we see that the phase-space spiral in

our Sgr velocity simulations is much more loosely wound

than what has been observed using the Gaia data.

Looking at the asymmetry, mean vertical velocity and

phase-space spiral, we once again find that none of our

simulations are able to reproduce the perturbation seen

in the solar neighbourhood. We can therefore conclude

that changing the velocity of Sgr is not enough to make

the simulated perturbation match the observed pertur-

bation. This is even more obvious when we note that

the simulations used in this Section are run using the

Medium Sgr mass model. In Section 3.1, we established
that the Medium mass model was still too large in terms

of the remnant mass. So not only is the perturbation not

a match for any of the simulations, but the second heav-

iest Sgr model is still not enough to create the observed

amplitude in the asymmetry and yet the final mass is

still much too large.

3.3. Changing Milky Way Halo Mass

Our final investigation looks at how changing the mass

of the Milky Way changes the perturbation in the sim-
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Figure 10. The same as Figure 9, but for MWP14-3, the
initial condition with the heaviest Milky Way halo.

ulation. To do this, we use the medium Sgr mass model

(Sgr 2). Though we have found that the final mass

of the medium Sgr is consistently too large, we want

to ensure that the signal is large enough to see in our

simulations. We also look at the fastest, median, and

slowest Sgr velocities for each of the Milky Way mod-

els. Again, we bin orbits by their velocity through the

mid-plane (vz,through) for each of the Milky Way mod-

els. The fastest, median, and slowest Sgr orbits corre-

spond to the first, fifth, and ninth bin (out of nine bins).

One other consideration in this section is that the slow-

est Sgr orbit in MWP14-1 is only integrated back one
apocentre before being placed. This is because the sec-
ond last pericentre occurred ∼ 8 Gyr ago and all effects

from that apocentre would have phase mixed, so in that

case only, the shape of the perturbation is set only by

the most recent pericentre passage. In the MWP14-1

simulation the number of particles in each solar neigh-

bourhood of the different simulations from Fastest to
Slowest is: 489 542, 571 458, and 803 395. For MWP14-
3, the solar neighbourhoods contain 962 493, 1 026 534,
and 949 064 particles from Fastest to Slowest.

In BB21 we found that the mass of the Milky Way

had a significant effect on the shape and amplitude of
the perturbation, especially the asymmetry, which we

wanted to follow up with N -body simulations. Investi-
gating two more Milky Way models requires new initial

conditions to be set up and run to equilibrium. Due to

computational constraints, we decided to halve the num-

ber of particles in our MWP14-1 and MWP14-3 sim-

ulations; therefore all simulations in this section have
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approximately 500 million particles. The initial condi-
tions for both are initialised using GalIC as described

in Section 2.1 using the values from Table 2. We chose

to run simulations with all three Milky Way mass ha-

los for completeness to ensure we covered a reasonable

range of possible Milky Way halo masses, though we ex-

pect MWP14-2 or MWP14-3 to provide the best match
based on the results of BB21. For MWP14-3, we found
that the outer reaches of the disc took longer to reach

equilibrium in our isolated Milky Way simulation, so

the equilibrium simulation was run for 5 Gyr instead of

3 Gyr.
In Figure 8, we show the vertical density profile, asym-

metry and mean vertical velocity for the three different

Milky Way models for each of the three different Sgr ve-

locity bins. Looking first at the density profiles, we see

that the mid-plane density of MWP14-1 is much lower

than the other two simulations in both the Fastest and

Median simulations. This likely happens because the

disc in the MWP14-1 experiences a smaller restoring
force due to the smaller halo mass and is not able to
compete with the large force from the Fastest and Me-
dian Sgr encounters, and is therefore more fluffed up

by the encounter. As previously discussed, the vary-

ing mid-plane densities will greatly affect any possible

trends we could see, and therefore we will only discuss

MWP14-1 in terms of trends for the Slowest simulation.
In the Fastest simulation, the amplitude of the perturba-
tion in MWP14-2 is quite large and does not follow the

same oscillatory pattern as seen in other smaller scale

perturbations. This is likely due to the exact configu-

ration in MWP14-2 leading to a closer passage by the

solar neighbourhood than the other two simulations. In

BB21, we found that as we increased the Milky Way halo
mass in general, Sgr passed through the disc at higher
velocity and more recently and the asymmetry wave-

length and the asymmetry amplitude increased. This

was not consistent across all Sgr models and all Sgr kine-

matics, but held in most cases. The outliers were due

to closer encounters between Sgr and the solar neigh-

bourhood due to a combination of the circular veloc-
ity of the neighbourhood and the effects of dynamical
friction in that specific halo. It is therefore also diffi-

cult to use the Fastest MWP14-2 simulation to uncover

trends. In the Median simulation, all three perturba-

tions have a much more realistic amplitude. Again, we

exclude MWP14-1 due to the small mid-plane density.
However, we do see that the amplitude of the asymme-
try in MWP14-3 is generally larger than the amplitude
of the perturbation in MWP14-2. Furthermore, we see

that within 2 kpc, the asymmetry in MWP14-3 peaks

twice while the asymmetry in MWP14-2 peaks three or

more times. This tells us that as we increase the Milky

Way halo mass, the amplitude and the asymmetry wave-

length both increase, in agreement with our expecta-

tions from BB21. Finally, in the slowest Sgr orbit, with

all of the mid-plane densities being fairly similar, we are

able to compare across all three Milky Way halo masses.

Clearly, the amplitude of the asymmetry increases as we

increase the mass of the halo as does the perturbation

wavelength, though the exact asymmetry wavelength in

MWP14-1 is difficult to discern given the very small am-

plitude of the perturbation.

We next consider the mean vertical velocity for each of
the simulations. Across all nine simulations considered,

the Fastest MWP14-1 simulation is the only one with
a clear bending mode. The locations of the troughs are
similar to that those seen in the data, however the ampli-
tude is much too small. Furthermore, the asymmetry for

that simulation was far from a match to the data. With

less particles in the solar neighbourhood-like volumes,

the mean vertical velocity measurements for MWP14-

1 and MWP14-3 come with much larger uncertainties.
So, while it is difficult to uncover trends in the mean
vertical velocity, it is easy to tell that none are within
uncertainty of the true observations, especially the dip

at z ∼ 0.5 kpc. While recovering oscillatory asymmetry

measurements in our simulation is quite easy, it seems
that recovering mean vertical velocity perturbations on

the order of a couple km s−1 is much more difficult using
Sgr.

In BB21, we found that MWP14-3 resulted in the

perturbations with the most accurate shape, but con-

sistently found that the asymmetry wavelength was too

large. In our simulations, the model with the asym-

metry and mean vertical velocity most similar to the

Gaia DR2 observations is the median velocity Sgr in
MWP14-3, the heaviest halo. The asymmetry for that

simulation is the best match for the dip in the asymme-

try at z ≈ 0.4 kpc, but it still far from an exact match.

The dip in the asymmetry of the simulation is centred

closer to z = 0.7 kpc. Furthermore, the peak in the

simulation asymmetry at z ≈ 1.0 is not seen in the Gaia

DR2 data. If we calculate the breathing and bending

mode amplitudes for that simulation, we find that the

bending and breathing amplitudes of are within uncer-

tainty of each other at all heights. This tells us that

the symmetric vs. antisymmetric components of the ve-

locity are approximately equal. In Figure C.6 of Gaia

Collaboration et al. (2018b) we see that there should
not be any amplitude of a breathing mode at the Sun’s

location out to 1.2 kpc, let alone a breathing mode with

approximately the same amplitude as the bending mode.

Furthermore, the final mass of Sgr in that simulation is
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approximately 15× 108 M⊙, which is approximately 3-6
times too large compared to the measured mass of the

Sgr remnant (Vasiliev & Belokurov 2020) and yet the

amplitude of the dip in the asymmetry near z = 0.5 kpc

is still too small. Therefore, while we can conclude that
the median Sgr velocity model for MWP14-3 is the best

at reproducing one feature of the asymmetry, it is not a
good match.

Finally, we also look at the phase space for each of the

simulations coloured by the normalized change in den-
sity, the radial velocity, and the normalized azimuthal
velocity. Figure 9 shows the phase-space spirals seen

in the MWP14-1 simulations. There are no discernible
trends in the phase space when comparing the different
Sgr orbit speeds. In fact, for the Slowest simulation, it
is difficult to resolve a spiral at all in the normalized

density due to the low amplitude and low number of

particles. In the other two simulations, we can compare

the phase-space spiral to the one seen in the Gaia data,

and again find that they are too loosely wound to be a

match. One particularly interesting feature is the very

distinct spiral in the Fastest simulation when coloured

by the radial velocity. This is surprising because that

choice of colouring phase space is the least distinct in

the data, yet is very clear in our simulation. Figure 10

shows the phase-space spiral for the three simulations

run in MWP14-3. Again, it is difficult to discern any
patterns between the simulations. However, one thing
of note is the Median simulation when coloured by the

normalized azimuthal velocity. In the Gaia data, there

is clearly only one arm that spirals around. In our sim-

ulation, it appears there are two distinct arms spiralling

out from the centre. This is further proof that while

the asymmetry of the Median simulation in MWP14-3
might have vaguely resembled observations, it is far from
a match, leaving us once again with no consistent match

to observations throughout all of our simulations.

4. DISCUSSION & CONCLUSION

The origin of the phase-space spiral has been a largely

debated topic. One of the leading theories is that the

passage of Sgr caused oscillations in the solar neighbour-
hood. This paper focuses on using a suite of 13 simu-
lations that explore the parameter space of Sgr’s mass

and orbit, as well as the Milky Way halo mass, to help

address this question. These simulations are intended

to be shared with the research community for further

investigations.

We start by describing a thorough method for ini-
tializing Milky Way initial conditions derived from the

properties of MWPotential2014 in galpy. We consider

three different Milky Way initial conditions with vary-

ing halo masses that range from 0.8−1.68 M⊙. Once we
had the Milky Way initial conditions, we evolved each

galaxy for 3+ Gyr in isolation using an N -body GPU

tree code Bonsai. We did this to ensure that the so-

lar neighbourhood was in fact in equilibrium and that

the dominant effects we saw would be from the passage

of Sgr. In all three galaxies, a bar formed in the cen-
tre of the galaxy, much like it did in the Milky Way.
We then looked at the properties of the final snapshot
of the equilibrium galaxies, including the asymmetry at

eight different solar neighbourhood-like volumes around

the simulated Milky Ways and found that the intrinsic

asymmetry of the disc is smaller than ∼ 0.025 out to 1.5

kpc, and smaller than ∼ 0.1 between 1.5 kpc < z < 2
kpc.

Once we had the initial condition, we had to figure

out where to place the Sgr particles such that they

would finish near the true Sgr position. In our simu-

lations, we use three different two-component Sgr mod-

els in our simulations with total initial masses ranging

from (5.1 − 51) × 109 M⊙. Placing the Sgr particles is
fairly complicated as it involves estimating the Milky

Way potential, mass loss of Sgr, and dynamical friction.

We solved the first dilemma by calculating an SCF po-

tential expansion of the N -body particles to estimate

the true potential of the unperturbed simulation. To

take into account the changing mass of Sgr in the calcu-

lation of dynamical friction, we estimated the mass loss
of Sgr by running a 100 million particle simulation of Sgr
and tracking the virial mass throughout the simulation.

Finally, we used a Chandrasekhar dynamical friction ob-

ject in galpy to estimate the dynamical friction of the

orbit. This allowed us to estimate where to place Sgr in

our simulations. Table 3 shows the final position of Sgr

in all of our simulations as well as the ’True’ position.
In each of our simulations, we investigated three dif-

ferent properties of the simulation to see how it affected

the perturbation to the solar neighbourhood. The first

was the mass of Sgr. We found that as we decreased

the mass of Sgr, the both the amplitude and the wave-

length of the asymmetry also decreased. Looking at the
mean vertical velocity, we found that all of the models
produced a breathing mode, unlike what is seen in the
Gaia data. Finally, we looked at the phase space for

each of the three simulations and found that the spiral
in the normalized density change is much less tightly
wound than what has been observed in the solar neigh-

bourhood. By colouring phase space by the radial ve-
locity, the amplitude of the radial velocity across phase
space decreases as the mass of Sgr decreases. Finally,

when coloured by the normalized azimuthal velocity, we

also find that we can see the spiral become more tightly
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wound as the Sgr mass decreases. Between the shape of
the asymmetry, the breathing mode in the mean verti-

cal velocity, and the loosely wound spiral we consistently

find that we are unable to match the observations. We

can therefore conclude that considering changes to Sgr’s

mass is not enough to match observations.

Next, we looked at the effect of the uncertainty in
Sgr’s current-day position on the observed perturba-

tion. With such a large uncertainty in Sgr’s current po-

sition, there is also a large uncertainty in its orbit. We

characterise an orbit by the speed at which it passed

through the disc most recently, vz,through. We chose
to compare four different orbits: Fastest, Fast, Median,

Slow, and Slowest. For these simulations, we chose to

use the medium mass model of Sgr in the middle halo

mass, MWP14-2. Comparing the simulations, we found

in both the asymmetry and the phase-space spiral that

the wavelength of the perturbation and the perturba-

tion amplitude decrease as the velocity of Sgr decreases.

We found that none of the simulations were able to re-
produce an asymmetry, mean vertical velocity, or phase-
space spiral similar to that observed in Gaia DR2. The

most similar in shape was the Fast simulation, but its

amplitude was too small and the asymmetry wavelength

was too long. Furthermore, it produced a breathing

mode in the mean vertical velocity, which is not seen

in the data. Considering the trends seen in our sim-
ulations, it is unlikely that changing the speed of Sgr
is enough to remedy the discrepancy between the Sgr’s

effect on the neighbourhood and observations.

Finally, we looked at how the Milky Way halo mass

affects the observed asymmetry. While the sections on
Sgr mass and Sgr kinematics used the medium mass

halo for the simulations, we also looked at a light and
a heavy halo. Comparing the different mass halos, we
discovered that as we increase the Milky Way halo mass,

the amplitude and the asymmetry wavelength both in-

crease. In the light halo simulation, we found that none

of the perturbations were similar to the observations

from Gaia DR2. Furthermore, the small mid-plane den-

sity in the simulation also meant that the both the am-

plitude and wavelength of the asymmetry were overes-

timated, making the simulations an even worse match

to observations. The heavy Milky Way halo simulation

resulted in the best match of all the simulations consid-

ered. The simulation where Sgr was initialized with the

median vz,through resulted in a dip in the asymmetry at
approximately z = 0.7 kpc. However, the asymmetry

for that simulation also contained a peak at z = 1.0 kpc

that is not seen in the data. Furthermore, the mean

vertical velocity contains a measurable breathing mode

within z < 1 kpc that does not exist in the Gaia DR2

data. This is also seen in the phase-space spiral that has

two distinct arms (breathing) instead of one (bending)

(Hunt et al. 2021). We therefore conclude that none of

the simulations are able to reproduce the observed per-

turbation to the solar neighbourhood. Furthermore, we

found across the board that the Sgr progenitor remnant

was consistently much heavier (10− 40× 108 M⊙) than

the true estimate values of Sgr (2.5− 5× 108 M⊙).

Our suite of simulations covers a larger range of pa-

rameter space in the Sgr-Milky Way interaction than has

previously been explored in one study. Thirteen simu-

lations of the Milky Way and Sgr interaction is fairly

numerous, but while we tried to cover the range of each

parameter, our sampling within that range was fairly
small. A further limitation of our analysis is that we
are not able to control the mid-plane density of the so-
lar neighbourhood. This means we cannot force it to

exactly match the mid-plane density of the Milky Way

disc, something BB21 shows can affect the perturbation

wavelength and amplitude. The lack of a gas disc is

also a limitation of our simulations, though it is a fairly
common simplification (Laporte et al. 2018; Hunt et al.

2021) and simply assumes that the gas approximately

follows the stars. Furthermore, hydrodynamical sim-

ulations are currently unable to match the resolution

achieved in these simulations, which means we would

be unable to resolve the solar neighbourhood features

to the accuracy required. Finally, from our analysis in
Section 3.3, we see that the mass of the halo, and there-

fore dynamical friction, has a large effect on the ob-

served perturbation. Our simulations span halo masses

of (0.98−1.95)×1012 M⊙, which is a very large range to

be covered by only three simulations. In our analysis, we

were only able to look at three different Milky Way mass

halos especially since they each had to be integrated for
3 or more Gyr each. Finally, we do not consider cuspy
halos. However, they are more resilient to stripping and

would therefore maintain a larger mass by the end of

our simulation. Our Sgr models were already too large,

so it is unlikely that a cuspy halo would lead to a more

accurate final mass of Sgr. Alternatively, as previously
discussed, some studies have suggested that Sgr must
lose mass more quickly than what is seen in our simula-
tions (Bland-Hawthorn & Tepper-Garćıa 2021). While

this may improve the disagreement in the amplitude of

the simulations and observations, it is unlikely to resolve

the discrepancy in the shape and wavelength of the per-

turbation. While the span of the simulations is larger
than has been considered before, there are still several
areas of improvement.

Despite these limitations, we can confidently rule out

Sgr as the dominant cause of the perturbations to the so-
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lar neighbourhood. We suggest that with a much smaller
mass than utilised here, it is likely that any perturba-

tion from Sgr would be a secondary effect on the solar

neighbourhood and certainly not the dominant one as

has previously been suggested. First, the final mass of

Sgr in all of our simulations is significantly larger than

the Sgr mass estimated by Vasiliev & Belokurov (2020)
as shown in Table 3. Despite them all having too large

a mass, we still consistently find that the amplitudes

within |z| < 1 kpc are too small with the exception

of a couple of the Fastest models or the Heaviest Sgr,

but none of which have the correct shape or mean ver-

tical velocity or phase-space spirals. In fact, we find

that all of our simulations have a spiral that is much

too loosely wound, a common dilemma with Sgr simu-

lations (Gómez et al. 2013; Laporte et al. 2019). Our

mass models of the Milky Way halo spans halo masses

of (0.8− 1.6)× 1012 M⊙ that largely covers the range of
possible masses in literature (Callingham et al. 2019),

so it is unlikely that the solution to the discrepancy is a
heavier or lighter halo than considered here. Even our
best match from the simulations only had one feature
that vaguely resembled the observed perturbations, but

overall was a poor match. Much like our investigation

in BB21, we conclude that Sgr could not have caused

the perturbation of the solar neighbourhood. We can-

not rule out the possibility that Sgr might play some role
in the perturbation, such as a spiral+bar+Sgr coupling,
but it likely plays a secondary role. The consistent dis-

crepancy in the perturbation wavelength and the shape

of the perturbation across all simulations, especially in

the phase space, leads us to conclude that Sgr cannot

be the driving mechanic for the perturbation to the so-

lar neighbourhood. It is highly unlikely that any ‘fine-
tuning’ of the Sgr parameters will result in a match to
observations given our large range of values as well as

the extensive number of simulations performed by other
authors (e.g., Laporte et al. 2018; Bland-Hawthorn &

Tepper-Garćıa 2021). It remains to be seen whether

other proposed scenarios such as the buckling of the bar,

or nonlinear coupling between bar-buckling, spiral struc-

ture, and perturbations from satellites including Sgr can

explain the vertical asymmetry in the solar neighbour-
hood.
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2012, ApJ, 756, 74, doi: 10.1088/0004-637X/756/1/74



20 Bennett, Bovy, & Hunt

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.

2018a, A&A, 616, A1, doi: 10.1051/0004-6361/201833051

Gaia Collaboration, Katz, D., Antoja, T., et al. 2018b,

A&A, 616, A11, doi: 10.1051/0004-6361/201832865

Gaia Collaboration, Helmi, A., van Leeuwen, F., et al.

2018c, A&A, 616, A12,

doi: 10.1051/0004-6361/201832698
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Kawata, D., Baba, J., Ciucǎ, I., et al. 2018, MNRAS, 479,

L108, doi: 10.1093/mnrasl/sly107

Khoperskov, S., Di Matteo, P., Gerhard, O., et al. 2019,

A&A, 622, L6, doi: 10.1051/0004-6361/201834707

Laporte, C. F. P., Johnston, K. V., Gómez, F. A.,
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